IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v32y2021i8d10.1007_s10845-021-01778-z.html
   My bibliography  Save this article

Modular production control using deep reinforcement learning: proximal policy optimization

Author

Listed:
  • Sebastian Mayer

    (Technische Hochschule Ingolstadt)

  • Tobias Classen

    (Technical University of Munich)

  • Christian Endisch

    (Technische Hochschule Ingolstadt)

Abstract

EU regulations on $$\textit{CO}_2$$ CO 2 limits and the trend of individualization are pushing the automotive industry towards greater flexibility and robustness in production. One approach to address these challenges is modular production, where workstations are decoupled by automated guided vehicles, requiring new control concepts. Modular production control aims at throughput-optimal coordination of products, workstations, and vehicles. For this np-hard problem, conventional control approaches lack in computing efficiency, do not find optimal solutions, or are not generalizable. In contrast, Deep Reinforcement Learning offers powerful and generalizable algorithms, able to deal with varying environments and high complexity. One of these algorithms is Proximal Policy Optimization, which is used in this article to address modular production control. Experiments in several modular production control settings demonstrate stable, reliable, optimal, and generalizable learning behavior. The agent successfully adapts its strategies with respect to the given problem configuration. We explain how to get to this learning behavior, especially focusing on the agent’s action, state, and reward design.

Suggested Citation

  • Sebastian Mayer & Tobias Classen & Christian Endisch, 2021. "Modular production control using deep reinforcement learning: proximal policy optimization," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2335-2351, December.
  • Handle: RePEc:spr:joinma:v:32:y:2021:i:8:d:10.1007_s10845-021-01778-z
    DOI: 10.1007/s10845-021-01778-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01778-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01778-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu-Fang Wang, 2020. "Adaptive job shop scheduling strategy based on weighted Q-learning algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 417-432, February.
    2. Juan Pablo Usuga Cadavid & Samir Lamouri & Bernard Grabot & Robert Pellerin & Arnaud Fortin, 2020. "Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1531-1558, August.
    3. Andreas Kuhnle & Jan-Philipp Kaiser & Felix Theiß & Nicole Stricker & Gisela Lanza, 2021. "Designing an adaptive production control system using reinforcement learning," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 855-876, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
    2. Mansoureh Maadi & Hadi Akbarzadeh Khorshidi & Uwe Aickelin, 2021. "A Review on Human–AI Interaction in Machine Learning and Insights for Medical Applications," IJERPH, MDPI, vol. 18(4), pages 1-27, February.
    3. Masoud Zafarzadeh & Magnus Wiktorsson & Jannicke Baalsrud Hauge, 2021. "A Systematic Review on Technologies for Data-Driven Production Logistics: Their Role from a Holistic and Value Creation Perspective," Logistics, MDPI, vol. 5(2), pages 1-32, April.
    4. Kyu Tae Park & Jinho Yang & Sang Do Noh, 2021. "VREDI: virtual representation for a digital twin application in a work-center-level asset administration shell," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 501-544, February.
    5. Lemstra, Mary Anny Moraes Silva & de Mesquita, Marco Aurélio, 2023. "Industry 4.0: a tertiary literature review," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    6. Guo, Daqiang & Li, Mingxing & Lyu, Zhongyuan & Kang, Kai & Wu, Wei & Zhong, Ray Y. & Huang, George Q., 2021. "Synchroperation in industry 4.0 manufacturing," International Journal of Production Economics, Elsevier, vol. 238(C).
    7. Rami Naimi & Maroua Nouiri & Olivier Cardin, 2021. "A Q-Learning Rescheduling Approach to the Flexible Job Shop Problem Combining Energy and Productivity Objectives," Sustainability, MDPI, vol. 13(23), pages 1-36, November.
    8. Tan Ching Ng & Sie Yee Lau & Morteza Ghobakhloo & Masood Fathi & Meng Suan Liang, 2022. "The Application of Industry 4.0 Technological Constituents for Sustainable Manufacturing: A Content-Centric Review," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    9. Rusindiyanto, 2023. "Production Planning and Control of Flooring Using Aggregate Planning Method," Technium, Technium Science, vol. 16(1), pages 397-404.
    10. Christian Meske & Enrico Bunde, 2023. "Design Principles for User Interfaces in AI-Based Decision Support Systems: The Case of Explainable Hate Speech Detection," Information Systems Frontiers, Springer, vol. 25(2), pages 743-773, April.
    11. Hien Nguyen Ngoc & Ganix Lasa & Ion Iriarte, 2022. "Human-centred design in industry 4.0: case study review and opportunities for future research," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 35-76, January.
    12. SungKu Kang & Ran Jin & Xinwei Deng & Ron S. Kenett, 2023. "Challenges of modeling and analysis in cybermanufacturing: a review from a machine learning and computation perspective," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 415-428, February.
    13. Alisha Lakra & Shubhkirti Gupta & Ravi Ranjan & Sushanta Tripathy & Deepak Singhal, 2022. "The Significance of Machine Learning in the Manufacturing Sector: An ISM Approach," Logistics, MDPI, vol. 6(4), pages 1-15, October.
    14. Shaohua Huang & Yu Guo & Nengjun Yang & Shanshan Zha & Daoyuan Liu & Weiguang Fang, 2021. "A weighted fuzzy C-means clustering method with density peak for anomaly detection in IoT-enabled manufacturing process," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1845-1861, October.
    15. Xiaohan Li & Chenwei Ma & Yang Lv, 2022. "Environmental Cost Control of Manufacturing Enterprises via Machine Learning under Data Warehouse," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    16. Carlos A. Escobar & Megan E. McGovern & Ruben Morales-Menendez, 2021. "Quality 4.0: a review of big data challenges in manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2319-2334, December.
    17. Nan Ma & Hongqi Li & Hualin Liu, 2024. "State-Space Compression for Efficient Policy Learning in Crude Oil Scheduling," Mathematics, MDPI, vol. 12(3), pages 1-16, January.
    18. Tan, Daniel & Suvarna, Manu & Shee Tan, Yee & Li, Jie & Wang, Xiaonan, 2021. "A three-step machine learning framework for energy profiling, activity state prediction and production estimation in smart process manufacturing," Applied Energy, Elsevier, vol. 291(C).
    19. Chenxi Yuan & Guoyan Li & Sagar Kamarthi & Xiaoning Jin & Mohsen Moghaddam, 2022. "Trends in intelligent manufacturing research: a keyword co-occurrence network based review," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 425-439, February.
    20. Mateo Ramos-Merino & Juan M. Santos-Gago & Luis M. Álvarez-Sabucedo, 2021. "Fuzzy traceability: using domain knowledge information to estimate the followed route of process instances in non-exhaustive monitoring environments," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2235-2255, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:8:d:10.1007_s10845-021-01778-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.