IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i7d10.1007_s10845-018-1395-x.html
   My bibliography  Save this article

Data-driven customer requirements discernment in the product lifecycle management via intuitionistic fuzzy sets and electroencephalogram

Author

Listed:
  • Shanhe Lou

    (Zhejiang University
    Zhejiang University)

  • Yixiong Feng

    (Zhejiang University
    Zhejiang University)

  • Hao Zheng

    (Zhejiang University
    Zhejiang University)

  • Yicong Gao

    (Zhejiang University
    Zhejiang University)

  • Jianrong Tan

    (Zhejiang University
    Zhejiang University)

Abstract

Large amount of data are collected through the product lifecycle management, and the benefits of big data analytics permeate the entire manufacturing value chain. However, the existing methods pay little attention to the analysis of customer requirements data in the beginning of life period. Thus, a data-driven approach for customer requirements discernment is proposed in this paper. It not only manages the vagueness in the semantic expression level using the intuitionistic fuzzy sets, but also adopts the electroencephalogram data as endogenous neural indicators to handle the vagueness in the neurocognitive level. An experimental research integrated with the Kano model is developed to record the EEG data which inherently interpret customers’ psychological states. Benefit from the data mining method, the effect of customer requirements on psychological response can be investigated using the EEG data. Taking the data of initial requirement importance, performance realization levels and customers’ psychological states into consideration, three novel adjusting models are established to acquire the comprehensive importance of each requirement. A case study is conducted to illustrate the feasibility of the approach proposed in this paper.

Suggested Citation

  • Shanhe Lou & Yixiong Feng & Hao Zheng & Yicong Gao & Jianrong Tan, 2020. "Data-driven customer requirements discernment in the product lifecycle management via intuitionistic fuzzy sets and electroencephalogram," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1721-1736, October.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:7:d:10.1007_s10845-018-1395-x
    DOI: 10.1007/s10845-018-1395-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-018-1395-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-018-1395-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven Saar & Valerie Thomas, 2002. "Toward Trash That Thinks: Product Tags for Environmental Management," Journal of Industrial Ecology, Yale University, vol. 6(2), pages 133-146, April.
    2. Rochdi Sarraj & Eric Ballot & Shenle Pan & Driss Hakimi & Benoit Montreuil, 2014. "Interconnected logistic networks and protocols: simulation-based efficiency assessment," Post-Print hal-01112138, HAL.
    3. Andrew Kusiak, 2017. "Smart manufacturing must embrace big data," Nature, Nature, vol. 544(7648), pages 23-25, April.
    4. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yicong Gao & Shanhe Lou & Hao Zheng & Jianrong Tan, 2023. "A data-driven method of selective disassembly planning at end-of-life under uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 565-585, February.
    2. Qingfei Tong & Xinguo Ming & Xianyu Zhang, 2023. "Construction of Sustainable Digital Factory for Automated Warehouse Based on Integration of ERP and WMS," Sustainability, MDPI, vol. 15(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Wu, Jiansong & Zhang, Linlin & Bai, Yiping & Reniers, Genserik, 2022. "A safety investment optimization model for power grid enterprises based on System Dynamics and Bayesian network theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    5. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    6. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    7. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    8. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    9. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    10. Yinhe Bu & Xingping Zhang, 2021. "On the Way to Integrate Increasing Shares of Variable Renewables in China: Experience from Flexibility Modification and Deep Peak Regulation Ancillary Service Market Based on MILP-UC Programming," Sustainability, MDPI, vol. 13(5), pages 1-22, February.
    11. Donovin D. Lewis & Aron Patrick & Evan S. Jones & Rosemary E. Alden & Abdullah Al Hadi & Malcolm D. McCulloch & Dan M. Ionel, 2023. "Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study," Energies, MDPI, vol. 16(4), pages 1-23, February.
    12. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    13. Xu, Jie & Lv, Tao & Hou, Xiaoran & Deng, Xu & Liu, Feng, 2021. "Provincial allocation of renewable portfolio standard in China based on efficiency and fairness principles," Renewable Energy, Elsevier, vol. 179(C), pages 1233-1245.
    14. Qiaohua Fang & Xuezhe Wei & Haifeng Dai, 2019. "A Remaining Discharge Energy Prediction Method for Lithium-Ion Battery Pack Considering SOC and Parameter Inconsistency," Energies, MDPI, vol. 12(6), pages 1-24, March.
    15. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    16. Ming Zhang & Qianwen Huang & Sihan Liu & Huiying Li, 2019. "Multi-Objective Optimization of Aircraft Taxiing on the Airport Surface with Consideration to Taxiing Conflicts and the Airport Environment," Sustainability, MDPI, vol. 11(23), pages 1-27, November.
    17. Ruidi Chen & Ioannis Ch. Paschalidis, 2022. "Robust Grouped Variable Selection Using Distributionally Robust Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1042-1071, September.
    18. Darya Pyatkina & Tamara Shcherbina & Vadim Samusenkov & Irina Razinkina & Mariusz Sroka, 2021. "Modeling and Management of Power Supply Enterprises’ Cash Flows," Energies, MDPI, vol. 14(4), pages 1-17, February.
    19. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
    20. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:7:d:10.1007_s10845-018-1395-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.