IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i6d10.1007_s10845-019-01521-9.html
   My bibliography  Save this article

A memetic algorithm for multi-objective distributed production scheduling: minimizing the makespan and total energy consumption

Author

Listed:
  • Guiliang Gong

    (Hunan University
    The University of Newcastle)

  • Raymond Chiong

    (The University of Newcastle)

  • Qianwang Deng

    (Hunan University)

  • Qiang Luo

    (Hunan University)

Abstract

The classical distributed production scheduling problem (DPSP) assumes that factories are identical, and each factory is composed of just some machines. Inspired by the fact that manufacturers these days typically work across different factories, and each of these factories normally has some workshops, we study an important extension of the DPSP with different factories and workshops (DPFW), where jobs can be processed and transferred between the factories, workshops and machines. To the best of our knowledge, this is the very first time distributed production scheduling with different factories and workshops is studied. We propose a novel memetic algorithm (MA) to solve this DPFW, aiming to minimize the makespan and total energy consumption. The proposed MA is incorporated with a well-designed chromosome encoding method and a balance-transfer initialization method to generate a good initial population. An effective local search operator is also presented to improve the MA’s convergence speed and fully exploit its solution space. A total of 50 DPFW benchmark instances are used to evaluate the performance of our MA. Computational experiments carried out confirm that the MA is able to easily obtain better solutions for the majority of the tested problem instances compared to three other well-known algorithms, demonstrating its superior performance over these algorithms in terms of solution quality. Our proposed method and the results presented here may be helpful for production managers who work with distributed manufacturing systems in scheduling their production activities by considering different factories and workshops. With this DPFW, imbalanced resource loads and unexpected bottlenecks, which regularly arise in traditional DPSP models, can be easily avoided.

Suggested Citation

  • Guiliang Gong & Raymond Chiong & Qianwang Deng & Qiang Luo, 2020. "A memetic algorithm for multi-objective distributed production scheduling: minimizing the makespan and total energy consumption," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1443-1466, August.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:6:d:10.1007_s10845-019-01521-9
    DOI: 10.1007/s10845-019-01521-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01521-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01521-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaoqun Duan & Chao Deng & Abolfazl Gharaei & Jun Wu & Bingran Wang, 2018. "Selective maintenance scheduling under stochastic maintenance quality with multiple maintenance actions," International Journal of Production Research, Taylor & Francis Journals, vol. 56(23), pages 7160-7178, December.
    2. Hao-Chin Chang & Tung-Kuan Liu, 2017. "Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1973-1986, December.
    3. Stéphane Dauzère-Pérès & Jan Paulli, 1997. "An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search," Annals of Operations Research, Springer, vol. 70(0), pages 281-306, April.
    4. Robert H. Storer & S. David Wu & Renzo Vaccari, 1992. "New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling," Management Science, INFORMS, vol. 38(10), pages 1495-1509, October.
    5. Pasandideh, Seyed Hamid Reza & Niaki, Seyed Taghi Akhavan & Nobil, Amir Hossein & Cárdenas-Barrón, Leopoldo Eduardo, 2015. "A multiproduct single machine economic production quantity model for an imperfect production system under warehouse construction cost," International Journal of Production Economics, Elsevier, vol. 169(C), pages 203-214.
    6. Wang, Sheng-yao & Wang, Ling & Liu, Min & Xu, Ye, 2013. "An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 145(1), pages 387-396.
    7. Dinh Anh Phan & Thi Le Hoa Vo & Anh Ngoc Lai, 2019. "Supply chain coordination under trade credit and retailer effort," International Journal of Production Research, Taylor & Francis Journals, vol. 57(9), pages 2642-2655, May.
    8. De Giovanni, L. & Pezzella, F., 2010. "An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem," European Journal of Operational Research, Elsevier, vol. 200(2), pages 395-408, January.
    9. Naderi, Bahman & Ruiz, Rubén, 2014. "A scatter search algorithm for the distributed permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 323-334.
    10. Po-Hsiang Lu & Muh-Cherng Wu & Hao Tan & Yong-Han Peng & Chen-Fu Chen, 2018. "A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 19-34, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shoujing Zhang & Tiantian Hou & Qing Qu & Adam Glowacz & Samar M. Alqhtani & Muhammad Irfan & Grzegorz Królczyk & Zhixiong Li, 2022. "An Improved Mayfly Method to Solve Distributed Flexible Job Shop Scheduling Problem under Dual Resource Constraints," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    2. Yuran Jin & Cheng Gao, 2023. "Hybrid Optimization of Green Supply Chain Network and Scheduling in Distributed 3D Printing Intelligent Factory," Sustainability, MDPI, vol. 15(7), pages 1-20, March.
    3. Abdelmonem M. Ibrahim & Mohamed A. Tawhid, 2023. "An improved artificial algae algorithm integrated with differential evolution for job-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1763-1778, April.
    4. Zhen Wang & Qianwang Deng & Like Zhang & Xiaoyan Liu, 2023. "Integrated scheduling of production, inventory and imperfect maintenance based on mutual feedback of supplier and demander in distributed environment," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3445-3467, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arshad Ali & Yuvraj Gajpal & Tarek Y. Elmekkawy, 2021. "Distributed permutation flowshop scheduling problem with total completion time objective," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 425-447, June.
    2. Xiong, Fuli & Xing, Keyi & Wang, Feng, 2015. "Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time," European Journal of Operational Research, Elsevier, vol. 240(2), pages 338-354.
    3. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    4. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
    5. Po-Hsiang Lu & Muh-Cherng Wu & Hao Tan & Yong-Han Peng & Chen-Fu Chen, 2018. "A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 19-34, January.
    6. Nicolás Álvarez-Gil & Rafael Rosillo & David de la Fuente & Raúl Pino, 2021. "A discrete firefly algorithm for solving the flexible job-shop scheduling problem in a make-to-order manufacturing system," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1353-1374, December.
    7. Du, Yu & Li, Jun-qing, 2024. "A deep reinforcement learning based algorithm for a distributed precast concrete production scheduling," International Journal of Production Economics, Elsevier, vol. 268(C).
    8. Xiaohui Zhang & Xinhua Liu & Shufeng Tang & Grzegorz Królczyk & Zhixiong Li, 2019. "Solving Scheduling Problem in a Distributed Manufacturing System Using a Discrete Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 12(17), pages 1-24, August.
    9. Bahman Naderi & Rubén Ruiz & Vahid Roshanaei, 2023. "Mixed-Integer Programming vs. Constraint Programming for Shop Scheduling Problems: New Results and Outlook," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 817-843, July.
    10. Yiyi Xu & M’hammed Sahnoun & Fouad Ben Abdelaziz & David Baudry, 2022. "A simulated multi-objective model for flexible job shop transportation scheduling," Annals of Operations Research, Springer, vol. 311(2), pages 899-920, April.
    11. Sun, X.T. & Chung, S.H. & Chan, Felix T.S., 2015. "Integrated scheduling of a multi-product multi-factory manufacturing system with maritime transport limits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 110-127.
    12. Li, Xinyu & Gao, Liang, 2016. "An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 174(C), pages 93-110.
    13. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    14. Li-Hao Zhang & Cheng Zhang & Jie Yang, 2023. "Impacts of power structure and financing choice on manufacturer’s encroachment in a supply chain," Annals of Operations Research, Springer, vol. 322(1), pages 273-319, March.
    15. Chenyao Zhang & Yuyan Han & Yuting Wang & Junqing Li & Kaizhou Gao, 2023. "A Distributed Blocking Flowshop Scheduling with Setup Times Using Multi-Factory Collaboration Iterated Greedy Algorithm," Mathematics, MDPI, vol. 11(3), pages 1-25, January.
    16. Ruiz, Rubén & Pan, Quan-Ke & Naderi, Bahman, 2019. "Iterated Greedy methods for the distributed permutation flowshop scheduling problem," Omega, Elsevier, vol. 83(C), pages 213-222.
    17. Guangchen Wang & Xinyu Li & Liang Gao & Peigen Li, 2022. "An effective multi-objective whale swarm algorithm for energy-efficient scheduling of distributed welding flow shop," Annals of Operations Research, Springer, vol. 310(1), pages 223-255, March.
    18. Groflin, Heinz & Klinkert, Andreas, 2007. "Feasible insertions in job shop scheduling, short cycles and stable sets," European Journal of Operational Research, Elsevier, vol. 177(2), pages 763-785, March.
    19. Lunardi, Willian T. & Birgin, Ernesto G. & Ronconi, Débora P. & Voos, Holger, 2021. "Metaheuristics for the online printing shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 293(2), pages 419-441.
    20. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:6:d:10.1007_s10845-019-01521-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.