IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v29y2018i1d10.1007_s10845-015-1097-6.html
   My bibliography  Save this article

An effective detailed operation scheduling in MES based on hybrid genetic algorithm

Author

Listed:
  • Li Zhou

    (Huazhong University of Science and Technology)

  • Zhuoning Chen

    (Huazhong University of Science and Technology)

  • Shaoping Chen

    (Huazhong University of Science and Technology)

Abstract

A detailed operation scheduling solution based on hybrid genetic algorithm is proposed and integrated with the manufacturing execution system (MES) for multi-objective scheduling. The constraints and influences from real-time production information collected by MES will all be considered in scheduling procedures. Each order can be scheduled forward or backward and the various constraints such as the ones from working calendar, processing capacity of manufacturing resources and the connection type between the operation and the previous operation will be obeyed in scheduling. A genetic algorithm is designed according to the features of the scheduling problem. Two methods of operation sequence (OS) initialization (named as OSIOP and ROSI) and three methods of manufacturing resource selection (named as RSAPT, RSWTB and RRS) are designed for population initialization. A variable neighborhood search is designed and implanted in the process of GA to improve the scheduling results. The experiments are made and the results have proved the feasibility of the hybrid GA. This scheduling solution is programmed in $$\hbox {C}^{\#}$$ C # and applied to a commercial MES software successfully.

Suggested Citation

  • Li Zhou & Zhuoning Chen & Shaoping Chen, 2018. "An effective detailed operation scheduling in MES based on hybrid genetic algorithm," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 135-153, January.
  • Handle: RePEc:spr:joinma:v:29:y:2018:i:1:d:10.1007_s10845-015-1097-6
    DOI: 10.1007/s10845-015-1097-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1097-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1097-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ho, Nhu Binh & Tay, Joc Cing & Lai, Edmund M.-K., 2007. "An effective architecture for learning and evolving flexible job-shop schedules," European Journal of Operational Research, Elsevier, vol. 179(2), pages 316-333, June.
    2. De Giovanni, L. & Pezzella, F., 2010. "An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem," European Journal of Operational Research, Elsevier, vol. 200(2), pages 395-408, January.
    3. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    4. Zhang, Rui & Chang, Pei-Chann & Wu, Cheng, 2013. "A hybrid genetic algorithm for the job shop scheduling problem with practical considerations for manufacturing costs: Investigations motivated by vehicle production," International Journal of Production Economics, Elsevier, vol. 145(1), pages 38-52.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao-Chin Chang & Tung-Kuan Liu, 2017. "Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1973-1986, December.
    2. Xiong, Fuli & Xing, Keyi & Wang, Feng, 2015. "Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time," European Journal of Operational Research, Elsevier, vol. 240(2), pages 338-354.
    3. Zhang, Sicheng & Li, Xiang & Zhang, Bowen & Wang, Shouyang, 2020. "Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system," European Journal of Operational Research, Elsevier, vol. 283(2), pages 441-460.
    4. Li, Xinyu & Gao, Liang, 2016. "An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 174(C), pages 93-110.
    5. Lili Dai & He Lu & Dezheng Hua & Xinhua Liu & Hongming Chen & Adam Glowacz & Grzegorz Królczyk & Zhixiong Li, 2022. "A Novel Production Scheduling Approach Based on Improved Hybrid Genetic Algorithm," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    6. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    7. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2018. "Minimizing Piecewise-Concave Functions Over Polyhedra," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 580-597, May.
    8. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    9. Fernandez del Pozo, J. A. & Bielza, C. & Gomez, M., 2005. "A list-based compact representation for large decision tables management," European Journal of Operational Research, Elsevier, vol. 160(3), pages 638-662, February.
    10. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    11. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    12. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2009. "A robust and efficient algorithm for planar competitive location problems," Annals of Operations Research, Springer, vol. 167(1), pages 87-105, March.
    13. Patricia Domínguez-Marín & Stefan Nickel & Pierre Hansen & Nenad Mladenović, 2005. "Heuristic Procedures for Solving the Discrete Ordered Median Problem," Annals of Operations Research, Springer, vol. 136(1), pages 145-173, April.
    14. Ali Shahabi & Sadigh Raissi & Kaveh Khalili-Damghani & Meysam Rafei, 2021. "Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology," Operational Research, Springer, vol. 21(3), pages 1691-1721, September.
    15. Janssens, Jochen & Talarico, Luca & Sörensen, Kenneth, 2016. "A hybridised variable neighbourhood tabu search heuristic to increase security in a utility network," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 221-230.
    16. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    17. Felipe, Ángel & Ortuño, M. Teresa & Righini, Giovanni & Tirado, Gregorio, 2014. "A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 111-128.
    18. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R & M. Calle, 2020. "Scheduling a dual-resource flexible job shop with makespan and due date-related criteria," Annals of Operations Research, Springer, vol. 291(1), pages 5-35, August.
    19. Naderi, B. & Zandieh, M., 2014. "Modeling and scheduling no-wait open shop problems," International Journal of Production Economics, Elsevier, vol. 158(C), pages 256-266.
    20. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:29:y:2018:i:1:d:10.1007_s10845-015-1097-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.