IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11747-d918934.html
   My bibliography  Save this article

A Novel Production Scheduling Approach Based on Improved Hybrid Genetic Algorithm

Author

Listed:
  • Lili Dai

    (Institute of Smart Materials and Applied Technology, Lianyungang Normal College, Lianyungang 222006, China)

  • He Lu

    (Institute of Smart Materials and Applied Technology, Lianyungang Normal College, Lianyungang 222006, China
    School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 211006, China)

  • Dezheng Hua

    (School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 211006, China)

  • Xinhua Liu

    (School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 211006, China)

  • Hongming Chen

    (School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 211006, China)

  • Adam Glowacz

    (Department of Automatic, Control and Robotics, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Grzegorz Królczyk

    (Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland)

  • Zhixiong Li

    (Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland
    Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea)

Abstract

Due to the complexity of the production shop in discrete manufacturing industry, the traditional genetic algorithm (GA) cannot solve the production scheduling problem well. In order to enhance the GA-based method to solve the production scheduling problem effectively, the simulated annealing algorithm (SAA) is used to develop an improved hybrid genetic algorithm. Firstly, the crossover probability and mutation probability of the genetic operation are adjusted, and the elite replacement operation is adopted for simulated annealing operator. Then, a mutation method is used for the comparison and replacement of the genetic operations to obtain the optimal value of the current state. Lastly, the proposed hybrid genetic algorithm is compared with several scheduling algorithms, and the superiority and efficiency of the proposed method are verified in solving the production scheduling.

Suggested Citation

  • Lili Dai & He Lu & Dezheng Hua & Xinhua Liu & Hongming Chen & Adam Glowacz & Grzegorz Królczyk & Zhixiong Li, 2022. "A Novel Production Scheduling Approach Based on Improved Hybrid Genetic Algorithm," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11747-:d:918934
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. De Giovanni, L. & Pezzella, F., 2010. "An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem," European Journal of Operational Research, Elsevier, vol. 200(2), pages 395-408, January.
    2. Bellabdaoui, A. & Teghem, J., 2006. "A mixed-integer linear programming model for the continuous casting planning," International Journal of Production Economics, Elsevier, vol. 104(2), pages 260-270, December.
    3. Zhang, Rui & Chang, Pei-Chann & Wu, Cheng, 2013. "A hybrid genetic algorithm for the job shop scheduling problem with practical considerations for manufacturing costs: Investigations motivated by vehicle production," International Journal of Production Economics, Elsevier, vol. 145(1), pages 38-52.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arindita Saha & Puja Dash & Naladi Ram Babu & Tirumalasetty Chiranjeevi & Mudadla Dhananjaya & Łukasz Knypiński, 2022. "Dynamic Stability Evaluation of an Integrated Biodiesel-Geothermal Power Plant-Based Power System with Spotted Hyena Optimized Cascade Controller," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    2. Taotao Xu & Lijian Yao & Lijun Xu & Qinhan Chen & Zidong Yang, 2023. "Image Segmentation of Cucumber Seedlings Based on Genetic Algorithm," Sustainability, MDPI, vol. 15(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Zhou & Zhuoning Chen & Shaoping Chen, 2018. "An effective detailed operation scheduling in MES based on hybrid genetic algorithm," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 135-153, January.
    2. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    3. Mohammad Ali Beheshtinia & Parisa Feizollahy & Masood Fathi, 2021. "Supply Chain Optimization Considering Sustainability Aspects," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    4. Hao-Chin Chang & Tung-Kuan Liu, 2017. "Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1973-1986, December.
    5. Shoujing Zhang & Tiantian Hou & Qing Qu & Adam Glowacz & Samar M. Alqhtani & Muhammad Irfan & Grzegorz Królczyk & Zhixiong Li, 2022. "An Improved Mayfly Method to Solve Distributed Flexible Job Shop Scheduling Problem under Dual Resource Constraints," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    6. Arash Amirteimoori & Reza Kia, 2023. "Concurrent scheduling of jobs and AGVs in a flexible job shop system: a parallel hybrid PSO-GA meta-heuristic," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 727-753, September.
    7. Nicolás Álvarez-Gil & Rafael Rosillo & David de la Fuente & Raúl Pino, 2021. "A discrete firefly algorithm for solving the flexible job-shop scheduling problem in a make-to-order manufacturing system," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1353-1374, December.
    8. Du, Yu & Li, Jun-qing, 2024. "A deep reinforcement learning based algorithm for a distributed precast concrete production scheduling," International Journal of Production Economics, Elsevier, vol. 268(C).
    9. Shijin Wang & Ming Liu, 2016. "Two-machine flow shop scheduling integrated with preventive maintenance planning," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(3), pages 672-690, February.
    10. Dayong Han & Qiuhua Tang & Zikai Zhang & Zixiang Li, 2020. "An Improved Migrating Birds Optimization Algorithm for a Hybrid Flow Shop Scheduling within Steel Plants," Mathematics, MDPI, vol. 8(10), pages 1-28, September.
    11. J. Behnamian & S. M. T. Fatemi Ghomi, 2016. "A survey of multi-factory scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(1), pages 231-249, February.
    12. Yiyi Xu & M’hammed Sahnoun & Fouad Ben Abdelaziz & David Baudry, 2022. "A simulated multi-objective model for flexible job shop transportation scheduling," Annals of Operations Research, Springer, vol. 311(2), pages 899-920, April.
    13. Xiong, Fuli & Xing, Keyi & Wang, Feng, 2015. "Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time," European Journal of Operational Research, Elsevier, vol. 240(2), pages 338-354.
    14. Wang, Sheng-yao & Wang, Ling & Liu, Min & Xu, Ye, 2013. "An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 145(1), pages 387-396.
    15. Shubham Singh & Avijit Khanra, 2024. "A robust optimization approach for repairing and overhauling in a captive repair shop under uncertainty," OPSEARCH, Springer;Operational Research Society of India, vol. 61(3), pages 1618-1653, September.
    16. Zhang, Sicheng & Li, Xiang & Zhang, Bowen & Wang, Shouyang, 2020. "Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system," European Journal of Operational Research, Elsevier, vol. 283(2), pages 441-460.
    17. Ruilin Pan & Qiong Wang & Zhenghong Li & Jianhua Cao & Yongjin Zhang, 2022. "Steelmaking-continuous casting scheduling problem with multi-position refining furnaces under time-of-use tariffs," Annals of Operations Research, Springer, vol. 310(1), pages 119-151, March.
    18. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    19. Giampieri, A. & Ling-Chin, J. & Ma, Z. & Smallbone, A. & Roskilly, A.P., 2020. "A review of the current automotive manufacturing practice from an energy perspective," Applied Energy, Elsevier, vol. 261(C).
    20. Naderi, B. & Zandieh, M., 2014. "Modeling and scheduling no-wait open shop problems," International Journal of Production Economics, Elsevier, vol. 158(C), pages 256-266.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11747-:d:918934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.