IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v31y2025i1d10.1007_s10732-024-09543-0.html
   My bibliography  Save this article

Transforming last mile delivery with heterogeneous assistants: drones and delivery robots

Author

Listed:
  • Cheng Chen

    (Fujian Agriculture and Forestry University)

  • Emrah Demir

    (Cardiff University)

  • Xisheng Hu

    (Fujian Agriculture and Forestry University)

  • Hainan Huang

    (Fujian Agriculture and Forestry University)

Abstract

With the rapid global expansion of e-commerce and the increasing number of online shoppers, logistics service providers (LSPs) are exploring sustainable solutions to meet the rising demand. Thanks to developments in automation and robotic technologies, LSPs have now the opportunity to enhance their operations through the deployment of autonomous delivery solutions like drones and delivery robots. This paper investigates a practical delivery system to integrate these emerging technologies simultaneously into conventional van-only delivery system. Additionally, the effects of various assistant characteristics on operations are examined through broader assumptions. We introduce a mathematical model aiming to minimize delivery makespan and explore various valid inequalities to mitigate its complexity. A new hybrid metaheuristic algorithm combining genetic algorithm and large neighborhood search algorithm is also proposed for large scale instances. A three-layer coding and encoding method is also introduced for genetic algorithm to manage the complex structure of the problem. Finally, extensive numerical experiments are conducted to show the effectiveness of valid inequalities and the algorithm. The sensitivity analyses provide comparisons of various delivery configurations and offer valuable insights for the logistics industry to integrate these innovative delivery solutions into their daily operations. In our experiments, using a single drone reduces total delivery times by up to 23.57%, while a single robot contributes to a 37.19% improvement in the objective. The heterogeneous configuration offers a substantial 49.71% improvement compared to using only vans for deliveries.

Suggested Citation

  • Cheng Chen & Emrah Demir & Xisheng Hu & Hainan Huang, 2025. "Transforming last mile delivery with heterogeneous assistants: drones and delivery robots," Journal of Heuristics, Springer, vol. 31(1), pages 1-42, March.
  • Handle: RePEc:spr:joheur:v:31:y:2025:i:1:d:10.1007_s10732-024-09543-0
    DOI: 10.1007/s10732-024-09543-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-024-09543-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-024-09543-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Cheng & Demir, Emrah & Huang, Yuan & Qiu, Rongzu, 2021. "The adoption of self-driving delivery robots in last mile logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    2. Daniel Schermer, 2019. "Integration of Drones in Last-Mile Delivery: The Vehicle Routing Problem with Drones," Operations Research Proceedings, in: Bernard Fortz & Martine Labbé (ed.), Operations Research Proceedings 2018, pages 17-22, Springer.
    3. Moshref-Javadi, Mohammad & Lee, Seokcheon & Winkenbach, Matthias, 2020. "Design and evaluation of a multi-trip delivery model with truck and drones," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    4. Srinivas, Sharan & Ramachandiran, Surya & Rajendran, Suchithra, 2022. "Autonomous robot-driven deliveries: A review of recent developments and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    5. Kitjacharoenchai, Patchara & Min, Byung-Cheol & Lee, Seokcheon, 2020. "Two echelon vehicle routing problem with drones in last mile delivery," International Journal of Production Economics, Elsevier, vol. 225(C).
    6. Iman Dayarian & Martin Savelsbergh & John-Paul Clarke, 2020. "Same-Day Delivery with Drone Resupply," Transportation Science, INFORMS, vol. 54(1), pages 229-249, January.
    7. Simoni, Michele D. & Kutanoglu, Erhan & Claudel, Christian G., 2020. "Optimization and analysis of a robot-assisted last mile delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    8. Munjeong Kang & Chungmok Lee, 2021. "An Exact Algorithm for Heterogeneous Drone-Truck Routing Problem," Transportation Science, INFORMS, vol. 55(5), pages 1088-1112, September.
    9. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2022. "Van-based robot hybrid pickup and delivery routing problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 894-914.
    10. Michael Dienstknecht & Nils Boysen & Dirk Briskorn, 2022. "The traveling salesman problem with drone resupply," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1045-1086, December.
    11. Chiang, Wen-Chyuan & Li, Yuyu & Shang, Jennifer & Urban, Timothy L., 2019. "Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization," Applied Energy, Elsevier, vol. 242(C), pages 1164-1175.
    12. Wang, Kai & Pesch, Erwin & Kress, Dominik & Fridman, Ilia & Boysen, Nils, 2022. "The Piggyback Transportation Problem: Transporting drones launched from a flying warehouse," European Journal of Operational Research, Elsevier, vol. 296(2), pages 504-519.
    13. Jeong, Ho Young & Song, Byung Duk & Lee, Seokcheon, 2019. "Truck-drone hybrid delivery routing: Payload-energy dependency and No-Fly zones," International Journal of Production Economics, Elsevier, vol. 214(C), pages 220-233.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2024. "Electric van-based robot deliveries with en-route charging," European Journal of Operational Research, Elsevier, vol. 317(3), pages 806-826.
    2. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    3. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    4. Amine Masmoudi, M. & Mancini, Simona & Baldacci, Roberto & Kuo, Yong-Hong, 2022. "Vehicle routing problems with drones equipped with multi-package payload compartments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    5. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    6. Jiang, Jie & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A multi-visit flexible-docking vehicle routing problem with drones for simultaneous pickup and delivery services," European Journal of Operational Research, Elsevier, vol. 312(1), pages 125-137.
    7. Meng, Shanshan & Guo, Xiuping & Li, Dong & Liu, Guoquan, 2023. "The multi-visit drone routing problem for pickup and delivery services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    8. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    9. Themistoklis Stamadianos & Nikolaos A. Kyriakakis & Magdalene Marinaki & Yannis Marinakis, 2023. "Routing Problems with Electric and Autonomous Vehicles: Review and Potential for Future Research," SN Operations Research Forum, Springer, vol. 4(2), pages 1-34, June.
    10. Mohammad Moshref-Javadi & Kristof P. Cauwenberghe & Brent A. McCunney & Ahmad Hemmati, 2023. "Enabling same-day delivery using a drone resupply model with transshipment points," Computational Management Science, Springer, vol. 20(1), pages 1-31, December.
    11. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    12. Zhao, Lei & Bi, Xinhua & Li, Gendao & Dong, Zhaohui & Xiao, Ni & Zhao, Anni, 2022. "Robust traveling salesman problem with multiple drones: Parcel delivery under uncertain navigation environments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    13. Schmidt, Sebastian & Saraceni, Adriana, 2024. "Consumer acceptance of drone-based technology for last mile delivery," Research in Transportation Economics, Elsevier, vol. 103(C).
    14. Soares, Ricardo & Marques, Alexandra & Amorim, Pedro & Parragh, Sophie N., 2024. "Synchronisation in vehicle routing: Classification schema, modelling framework and literature review," European Journal of Operational Research, Elsevier, vol. 313(3), pages 817-840.
    15. Belma Turan & Vera Hemmelmayr & Allan Larsen & Jakob Puchinger, 2024. "Transition towards sustainable mobility: the role of transport optimization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(2), pages 435-456, June.
    16. Cui, Shaohua & Yang, Ying & Gao, Kun & Cui, Heqi & Najafi, Arsalan, 2024. "Integration of UAVs with public transit for delivery: Quantifying system benefits and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    17. Dukkanci, Okan & Campbell, James F. & Kara, Bahar Y., 2024. "Facility location decisions for drone delivery: A literature review," European Journal of Operational Research, Elsevier, vol. 316(2), pages 397-418.
    18. Ostermeier, Manuel & Heimfarth, Andreas & Hübner, Alexander, 2023. "The multi-vehicle truck-and-robot routing problem for last-mile delivery," European Journal of Operational Research, Elsevier, vol. 310(2), pages 680-697.
    19. Ebrahim Teimoury & Reza Rashid, 2024. "A hybrid variable neighborhood search heuristic for the sustainable time-dependent truck-drone routing problem with rendezvous locations," Journal of Heuristics, Springer, vol. 30(1), pages 1-41, April.
    20. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2022. "Van-based robot hybrid pickup and delivery routing problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 894-914.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:31:y:2025:i:1:d:10.1007_s10732-024-09543-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.