IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v25y2019i2d10.1007_s10732-018-9396-7.html
   My bibliography  Save this article

Sample size estimation for power and accuracy in the experimental comparison of algorithms

Author

Listed:
  • Felipe Campelo

    (Universidade Federal de Minas Gerais)

  • Fernanda Takahashi

    (Universidade Federal de Minas Gerais)

Abstract

Experimental comparisons of performance represent an important aspect of research on optimization algorithms. In this work we present a methodology for defining the required sample sizes for designing experiments with desired statistical properties for the comparison of two methods on a given problem class. The proposed approach allows the experimenter to define desired levels of accuracy for estimates of mean performance differences on individual problem instances, as well as the desired statistical power for comparing mean performances over a problem class of interest. The method calculates the required number of problem instances, and runs the algorithms on each test instance so that the accuracy of the estimated differences in performance is controlled at the predefined level. Two examples illustrate the application of the proposed method, and its ability to achieve the desired statistical properties with a methodologically sound definition of the relevant sample sizes.

Suggested Citation

  • Felipe Campelo & Fernanda Takahashi, 2019. "Sample size estimation for power and accuracy in the experimental comparison of algorithms," Journal of Heuristics, Springer, vol. 25(2), pages 305-338, April.
  • Handle: RePEc:spr:joheur:v:25:y:2019:i:2:d:10.1007_s10732-018-9396-7
    DOI: 10.1007/s10732-018-9396-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-018-9396-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-018-9396-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Catherine C. McGeoch, 1996. "Feature Article---Toward an Experimental Method for Algorithm Simulation," INFORMS Journal on Computing, INFORMS, vol. 8(1), pages 1-15, February.
    2. Regina Nuzzo, 2014. "Scientific method: Statistical errors," Nature, Nature, vol. 506(7487), pages 150-152, February.
    3. Marie Coffin & Matthew J. Saltzman, 2000. "Statistical Analysis of Computational Tests of Algorithms and Heuristics," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 24-44, February.
    4. Vallada, Eva & Ruiz, Rubén, 2011. "A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 211(3), pages 612-622, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felipe Campelo & Elizabeth F. Wanner, 2020. "Sample size calculations for the experimental comparison of multiple algorithms on multiple problem instances," Journal of Heuristics, Springer, vol. 26(6), pages 851-883, December.
    2. Singh, Bikramjit & Singh, Amarinder, 2023. "Hybrid particle swarm optimization for pure integer linear solid transportation problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 243-266.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felipe Campelo & Elizabeth F. Wanner, 2020. "Sample size calculations for the experimental comparison of multiple algorithms on multiple problem instances," Journal of Heuristics, Springer, vol. 26(6), pages 851-883, December.
    2. Jyotirmoy Sarkar, 2018. "Will P†Value Triumph over Abuses and Attacks?," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(4), pages 66-71, July.
    3. Dung-Ying Lin & Tzu-Yun Huang, 2021. "A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem," Mathematics, MDPI, vol. 9(7), pages 1-20, April.
    4. Yung-Chia Chang & Kuei-Hu Chang & Ching-Ping Zheng, 2022. "Application of a Non-Dominated Sorting Genetic Algorithm to Solve a Bi-Objective Scheduling Problem Regarding Printed Circuit Boards," Mathematics, MDPI, vol. 10(13), pages 1-21, July.
    5. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    6. Arthur Matsuo Yamashita Rios de Sousa & Hideki Takayasu & Misako Takayasu, 2017. "Detection of statistical asymmetries in non-stationary sign time series: Analysis of foreign exchange data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-18, May.
    7. Shuwan Zhu & Wenjuan Fan & Xueping Li & Shanlin Yang, 2023. "Ambulance dispatching and operating room scheduling considering reusable resources in mass-casualty incidents," Operational Research, Springer, vol. 23(2), pages 1-37, June.
    8. Maurizio Canavari & Andreas C. Drichoutis & Jayson L. Lusk & Rodolfo M. Nayga, Jr., 2018. "How to run an experimental auction: A review of recent advances," Working Papers 2018-5, Agricultural University of Athens, Department Of Agricultural Economics.
    9. Andrew Gelman & Christian Hennig, 2017. "Beyond subjective and objective in statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 967-1033, October.
    10. Jin Xu & Natarajan Gautam, 2020. "On competitive analysis for polling systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 404-419, September.
    11. Jun-Ho Lee & Hyun-Jung Kim, 2021. "A heuristic algorithm for identical parallel machine scheduling: splitting jobs, sequence-dependent setup times, and limited setup operators," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 992-1026, December.
    12. Absalom E Ezugwu & Olawale J Adeleke & Serestina Viriri, 2018. "Symbiotic organisms search algorithm for the unrelated parallel machines scheduling with sequence-dependent setup times," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
    13. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
    14. Yepes-Borrero, Juan C. & Perea, Federico & Ruiz, Rubén & Villa, Fulgencia, 2021. "Bi-objective parallel machine scheduling with additional resources during setups," European Journal of Operational Research, Elsevier, vol. 292(2), pages 443-455.
    15. F. Angel-Bello & Y. Cardona-Valdés & A. Álvarez, 2019. "Mixed integer formulations for the multiple minimum latency problem," Operational Research, Springer, vol. 19(2), pages 369-398, June.
    16. Mansouri, S. Afshin & Aktas, Emel & Besikci, Umut, 2016. "Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption," European Journal of Operational Research, Elsevier, vol. 248(3), pages 772-788.
    17. Martin E Héroux & Janet L Taylor & Simon C Gandevia, 2015. "The Use and Abuse of Transcranial Magnetic Stimulation to Modulate Corticospinal Excitability in Humans," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-10, December.
    18. Arnd Huchzermeier & Tobias Mönch, 2023. "Mixed‐model assembly lines with variable takt and open stations," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 704-722, March.
    19. Ching-Jong Liao & Cheng-Hsiung Lee & Hsing-Tzu Tsai, 2016. "Scheduling with multi-attribute set-up times on unrelated parallel machines," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4839-4853, August.
    20. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2018. "A new methodology for the open-pit mine production scheduling problem," Omega, Elsevier, vol. 81(C), pages 169-182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:25:y:2019:i:2:d:10.1007_s10732-018-9396-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.