IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v25y1996i1p35-41.html
   My bibliography  Save this article

A Note on Correlated Equilibrium

Author

Listed:
  • Evangelista, Fe S
  • Raghavan, T E S

Abstract

The set of correlated equilibria for a bimatrix game is a closed, bounded, convex set containing the set of Nash equilibria. We show that every extreme point of a maximal Nash set is an extreme point of the above convex set. We also give an example to show that this result is not true in the payoff space, i.e., there are games where no Nash equilibrium payoff is an extreme point of the set of correlated equilibrium payoffs.

Suggested Citation

  • Evangelista, Fe S & Raghavan, T E S, 1996. "A Note on Correlated Equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(1), pages 35-41.
  • Handle: RePEc:spr:jogath:v:25:y:1996:i:1:p:35-41
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viossat, Yannick, 2006. "The Geometry of Nash Equilibria and Correlated Equilibria and a Generalization of Zero-Sum Games," SSE/EFI Working Paper Series in Economics and Finance 641, Stockholm School of Economics.
    2. Ramsey, David M. & Szajowski, Krzysztof, 2008. "Selection of a correlated equilibrium in Markov stopping games," European Journal of Operational Research, Elsevier, vol. 184(1), pages 185-206, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:25:y:1996:i:1:p:35-41. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.