IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v91y2025i4d10.1007_s10898-025-01474-9.html
   My bibliography  Save this article

Applying augmented weak subdifferentials and normal cones for nonconvex mathematical programming problems

Author

Listed:
  • Tran Van Su

    (The University of Danang - University of Science and Education)

  • Chu Van Tiep

    (The University of Danang - University of Science and Education)

Abstract

The paper is devoted to the study of some necessary and sufficient optimality conditions for a nonconvex extended-real-valued function having a global minimum/and a vector-valued mapping having a weakly efficient solution at a given point in terms of the augmented weak subdifferentials and the augmented normal cones in reflexive Banach spaces without any convexity assumption. By applying a special separation theorem for the nonconvex sets in reflexive Banach spaces, some necessary optimality conditions for a nonconvex (scalar/vector) function having a global minimum/and a (weakly) efficient solution concern the existence of a weakly subgradient pair are derived. Under some suitable assumptions, one of such conditions becomes the sufficient optimality condition respectively. An application of the obtained result for the nonsmooth nonconvex multiobjective mathematical programming problem having set, inequality and equality constraints is presented accordingly.

Suggested Citation

  • Tran Van Su & Chu Van Tiep, 2025. "Applying augmented weak subdifferentials and normal cones for nonconvex mathematical programming problems," Journal of Global Optimization, Springer, vol. 91(4), pages 765-786, April.
  • Handle: RePEc:spr:jglopt:v:91:y:2025:i:4:d:10.1007_s10898-025-01474-9
    DOI: 10.1007/s10898-025-01474-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-025-01474-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-025-01474-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank H. Clarke, 1976. "A New Approach to Lagrange Multipliers," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 165-174, May.
    2. Gulcin Dinc Yalcin & Refail Kasimbeyli, 2020. "On weak conjugacy, augmented Lagrangians and duality in nonconvex optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 199-228, August.
    3. R. T. Rockafellar, 1981. "Proximal Subgradients, Marginal Values, and Augmented Lagrangians in Nonconvex Optimization," Mathematics of Operations Research, INFORMS, vol. 6(3), pages 424-436, August.
    4. Elena Constantin, 2021. "Necessary conditions for weak minima and for strict minima of order two in nonsmooth constrained multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 177-193, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincenzo Basco, 2020. "Representation of Weak Solutions of Convex Hamilton–Jacobi–Bellman Equations on Infinite Horizon," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 370-390, November.
    2. Enrico Bellino, 2010. "Comment To ‘Commodity Content . . .’ By Fujimoto And Opocher," Metroeconomica, Wiley Blackwell, vol. 61(4), pages 749-753, November.
    3. Kuang Bai & Yixia Song & Jin Zhang, 2023. "Second-Order Enhanced Optimality Conditions and Constraint Qualifications," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1264-1284, September.
    4. Xi Yin Zheng & Xiaoqi Yang, 2007. "Lagrange Multipliers in Nonsmooth Semi-Infinite Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 168-181, February.
    5. Y. Y. Zhou & X. Q. Yang, 2009. "Duality and Penalization in Optimization via an Augmented Lagrangian Function with Applications," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 171-188, January.
    6. Florian Scheuer & Alexander Wolitzky, 2016. "Capital Taxation under Political Constraints," American Economic Review, American Economic Association, vol. 106(8), pages 2304-2328, August.
    7. Abhishek Singh & Debdas Ghosh & Qamrul Hasan Ansari, 2024. "Inexact Newton Method for Solving Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1333-1363, June.
    8. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.
    9. Casey Rothschild & Florian Scheuer, 2016. "Optimal Taxation with Rent-Seeking," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(3), pages 1225-1262.
    10. A. Kabgani & F. Lara, 2022. "Strong subdifferentials: theory and applications in nonconvex optimization," Journal of Global Optimization, Springer, vol. 84(2), pages 349-368, October.
    11. Yuntong Wang, 2014. "Envelope Theorem without Differentiability," Working Papers 1404, University of Windsor, Department of Economics.
    12. Zachary Bethune & Tai-Wei Hu & Guillaume Rocheteau, 2018. "Optimal Credit Cycles," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 27, pages 231-245, January.
    13. Bolte, Jérôme & Glaudin, Lilian & Pauwels, Edouard & Serrurier, Matthieu, 2021. "A Hölderian backtracking method for min-max and min-min problems," TSE Working Papers 21-1243, Toulouse School of Economics (TSE).
    14. Ewald, Christian Oliver & Nolan, Charles, 2024. "On the adaptation of the Lagrange formalism to continuous time stochastic optimal control: A Lagrange-Chow redux," Journal of Economic Dynamics and Control, Elsevier, vol. 162(C).
    15. Yi Jiang & Yi He & Jie Sun, 2011. "Subdifferential properties of the minimal time function of linear control systems," Journal of Global Optimization, Springer, vol. 51(3), pages 395-412, November.
    16. Elodie Adida & Georgia Perakis, 2007. "A nonlinear continuous time optimal control model of dynamic pricing and inventory control with no backorders," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(7), pages 767-795, October.
    17. Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
    18. Casey Rothschild & Florian Scheuer, 2014. "A Theory of Income Taxation under Multidimensional Skill Heterogeneity," NBER Working Papers 19822, National Bureau of Economic Research, Inc.
    19. Ronaldo C. Duarte, 2022. "Ground state solution for nonlocal scalar field equations involving an integro-differential operator," Partial Differential Equations and Applications, Springer, vol. 3(2), pages 1-14, April.
    20. D.P. Bertsekas & A.E. Ozdaglar, 2002. "Pseudonormality and a Lagrange Multiplier Theory for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 114(2), pages 287-343, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:91:y:2025:i:4:d:10.1007_s10898-025-01474-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.