IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v91y2025i3d10.1007_s10898-024-01442-9.html
   My bibliography  Save this article

Adaptive nested Monte Carlo approach for multi-objective efficient global optimization

Author

Listed:
  • Shengguan Xu

    (Nanjing Tech University)

  • Jianfeng Tan

    (Nanjing Tech University)

  • Jiale Zhang

    (Xiamen University)

  • Hongquan Chen

    (Nanjing University of Aeronautics and Astronautics)

  • Yisheng Gao

    (Nanjing University of Aeronautics and Astronautics)

Abstract

This paper presents a novel algorithm, namely the adaptive nested Monte Carlo based multi-objective Efficient Global Optimization (ANMC-MOEGO), which aims to enhance efficiency and accuracy while minimizing programming complexity in contrast to traditional multi-objective Efficient Global Optimization (MOEGO). In this algorithm, the programming complexity is streamlined by employing Monte Carlo simulation for both hypervolume improvement (HVI) and expected hypervolume improvement (EHVI) calculations. Furthermore, the efficiency and accuracy of HVI and EHVI calculations are improved through the utilization of a novel technique called adaptive Monte Carlo hypercube boundaries (AMCHB), which is based on the bisection method. The algorithm is validated via a set of test functions from the open literature. The numerical results demonstrate that the ANMC-MOEGO algorithm produces solutions closer to the theoretical results, with improved distributions on the corresponding Pareto fronts compared to the algorithm without AMCHB technique. Moreover, when obtaining a better Pareto front, the proposed algorithm is found to be more time-efficient, achieving speedups of up to 22.57 times.

Suggested Citation

  • Shengguan Xu & Jianfeng Tan & Jiale Zhang & Hongquan Chen & Yisheng Gao, 2025. "Adaptive nested Monte Carlo approach for multi-objective efficient global optimization," Journal of Global Optimization, Springer, vol. 91(3), pages 647-676, March.
  • Handle: RePEc:spr:jglopt:v:91:y:2025:i:3:d:10.1007_s10898-024-01442-9
    DOI: 10.1007/s10898-024-01442-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01442-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01442-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evans, Michael & Swartz, Timothy, 2000. "Approximating Integrals via Monte Carlo and Deterministic Methods," OUP Catalogue, Oxford University Press, number 9780198502784, Decembrie.
    2. Shengguan Xu & Hongquan Chen, 2018. "Nash game based efficient global optimization for large-scale design problems," Journal of Global Optimization, Springer, vol. 71(2), pages 361-381, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:jss:jstsof:33:i11 is not listed on IDEAS
    2. Episcopos, Athanasios, 2004. "The implied reserves of the Bank Insurance Fund," Journal of Banking & Finance, Elsevier, vol. 28(7), pages 1617-1635, July.
    3. Nott, David J. & Fielding, Mark & Leonte, Daniela, 2009. "On a generalization of the Laplace approximation," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1397-1403, June.
    4. Berridge, S.J. & Schumacher, J.M., 2002. "An Irregular Grid Approach for Pricing High Dimensional American Options," Other publications TiSEM 416a6d43-3466-47e0-b656-d, Tilburg University, School of Economics and Management.
    5. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    6. A. Kong & P. McCullagh & X.‐L. Meng & D. Nicolae & Z. Tan, 2003. "A theory of statistical models for Monte Carlo integration," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 585-604, August.
    7. Fakhereddine, Rana & Haddad, Rami El & Lécot, Christian & Maalouf, Joseph El, 2017. "Stratified Monte Carlo simulation of Markov chains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 135(C), pages 51-62.
    8. Hui Li & Yichi Zhang & Zhaoxiong Wu & Zhe Wang & Tong Wu, 2025. "An Importance Sampling Method for Generating Optimal Interpolation Points in Training Physics-Informed Neural Networks," Mathematics, MDPI, vol. 13(1), pages 1-20, January.
    9. Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2011. "Spatial Filtering and Eigenvector Stability: Space-Time Models for German Unemployment Data," International Regional Science Review, , vol. 34(2), pages 253-280, April.
    10. Henry Lam & Jose Blanchet & Damian Burch & Martin Z. Bazant, 2011. "Corrections to the Central Limit Theorem for Heavy-tailed Probability Densities," Journal of Theoretical Probability, Springer, vol. 24(4), pages 895-927, December.
    11. Qian, Zhiguang & Shapiro, Alexander, 2006. "Simulation-based approach to estimation of latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1243-1259, November.
    12. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2006. "Probability of loss of assured safety in temperature dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 91(3), pages 320-348.
    13. Khatun, Kaysara & Valdes, Paul J. & Knorr, Wolfgang & Chaturvedi, Rajiv Kumar, 2010. "Assessing the mitigation potential of forestry activities in a changing climate: A case study for Karnataka," Forest Policy and Economics, Elsevier, vol. 12(4), pages 277-286, April.
    14. Berridge, S.J. & Schumacher, J.M., 2004. "Pricing High-Dimensional American Options Using Local Consistency Conditions," Other publications TiSEM 8c8de631-5039-4eec-a965-3, Tilburg University, School of Economics and Management.
    15. Helton, Jon C. & Pilch, Martin & Sallaberry, Cédric J., 2014. "Probability of loss of assured safety in systems with multiple time-dependent failure modes: Representations with aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 171-200.
    16. L'Ecuyer, Pierre, 2004. "Random number generation," Papers 2004,21, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    17. Tsai, Rung-Ching & Bockenholt, Ulf, 2002. "Two-level linear paired comparison models: estimation and identifiability issues," Mathematical Social Sciences, Elsevier, vol. 43(3), pages 429-449, July.
    18. Peter J. Diggle & Irene Kaimi & Rosa Abellana, 2010. "Partial-Likelihood Analysis of Spatio-Temporal Point-Process Data," Biometrics, The International Biometric Society, vol. 66(2), pages 347-354, June.
    19. Djennad, Abdelmajid & Rigby, Robert & Stasinopoulos, Dimitrios & Voudouris, Vlasios & Eilers, Paul, 2015. "Beyond location and dispersion models: The Generalized Structural Time Series Model with Applications," MPRA Paper 62807, University Library of Munich, Germany.
    20. repec:jss:jstsof:08:i13 is not listed on IDEAS
    21. P. Gareth Ridall & Anthony N. Pettitt & Robert D. Henderson & Pamela A. McCombe, 2006. "Motor Unit Number Estimation—A Bayesian Approach," Biometrics, The International Biometric Society, vol. 62(4), pages 1235-1250, December.
    22. Lawrence Joseph, 2007. "Bayesian Core: A Practical Approach to Computational Bayesian Statistics by J. M. MARIN and C. P. ROBERT," Biometrics, The International Biometric Society, vol. 63(3), pages 975-976, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:91:y:2025:i:3:d:10.1007_s10898-024-01442-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.