IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v72y2018i4d10.1007_s10898-018-0671-9.html
   My bibliography  Save this article

A DC programming approach for solving multicast network design problems via the Nesterov smoothing technique

Author

Listed:
  • W. Geremew

    (Stockton University)

  • N. M. Nam

    (Portland State University)

  • A. Semenov

    (University of Jyväskylä)

  • V. Boginski

    (University of Central Florida
    University of Florida)

  • E. Pasiliao

    (Munitions Directorate, Air Force Research Laboratory)

Abstract

This paper continues our recent effort in applying continuous optimization techniques to study optimal multicast communication networks modeled as bilevel hierarchical clustering problems. Given a finite number of nodes, we consider two different models of multicast networks by identifying a certain number of nodes as cluster centers, and at the same time, locating a particular node that serves as a total center so as to minimize the total transportation cost throughout the network. The fact that the cluster centers and the total center have to be among the given nodes makes these problems discrete optimization problems. Our approach is to reformulate the discrete problems as continuous ones and to apply Nesterov’s smoothing approximation techniques on the Minkowski gauges that are used as distance measures. This approach enables us to propose two implementable DCA-based algorithms for solving the problems. Numerical results and practical applications are provided to illustrate our approach.

Suggested Citation

  • W. Geremew & N. M. Nam & A. Semenov & V. Boginski & E. Pasiliao, 2018. "A DC programming approach for solving multicast network design problems via the Nesterov smoothing technique," Journal of Global Optimization, Springer, vol. 72(4), pages 705-729, December.
  • Handle: RePEc:spr:jglopt:v:72:y:2018:i:4:d:10.1007_s10898-018-0671-9
    DOI: 10.1007/s10898-018-0671-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0671-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0671-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nguyen Mau Nam & R. Blake Rector & Daniel Giles, 2017. "Minimizing Differences of Convex Functions with Applications to Facility Location and Clustering," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 255-278, April.
    2. Gerhard Reinelt, 1991. "TSPLIB—A Traveling Salesman Problem Library," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 376-384, November.
    3. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marah-Lisanne Thormann & Phan Tu Vuong & Alain B. Zemkoho, 2024. "The Boosted Difference of Convex Functions Algorithm for Value-at-Risk Constrained Portfolio Optimization," Papers 2402.09194, arXiv.org.
    2. Kai Tu & Haibin Zhang & Huan Gao & Junkai Feng, 2020. "A hybrid Bregman alternating direction method of multipliers for the linearly constrained difference-of-convex problems," Journal of Global Optimization, Springer, vol. 76(4), pages 665-693, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Cook & Sanjeeb Dash & Ricardo Fukasawa & Marcos Goycoolea, 2009. "Numerically Safe Gomory Mixed-Integer Cuts," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 641-649, November.
    2. Thiago Serra & Ryan J. O’Neil, 2020. "MIPLIBing: Seamless Benchmarking of Mathematical Optimization Problems and Metadata Extensions," SN Operations Research Forum, Springer, vol. 1(3), pages 1-6, September.
    3. S Salhi & A Al-Khedhairi, 2010. "Integrating heuristic information into exact methods: The case of the vertex p-centre problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1619-1631, November.
    4. Marilène Cherkesly & Claudio Contardo, 2021. "The conditional p-dispersion problem," Journal of Global Optimization, Springer, vol. 81(1), pages 23-83, September.
    5. Malaguti, Enrico & Martello, Silvano & Santini, Alberto, 2018. "The traveling salesman problem with pickups, deliveries, and draft limits," Omega, Elsevier, vol. 74(C), pages 50-58.
    6. Bernardino, Raquel & Paias, Ana, 2018. "Solving the family traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 267(2), pages 453-466.
    7. Ernst Althaus & Felix Rauterberg & Sarah Ziegler, 2020. "Computing Euclidean Steiner trees over segments," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 309-325, October.
    8. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    9. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    10. Marjan Marzban & Qian-Ping Gu & Xiaohua Jia, 2016. "New analysis and computational study for the planar connected dominating set problem," Journal of Combinatorial Optimization, Springer, vol. 32(1), pages 198-225, July.
    11. Ferrer, José M. & Martín-Campo, F. Javier & Ortuño, M. Teresa & Pedraza-Martínez, Alfonso J. & Tirado, Gregorio & Vitoriano, Begoña, 2018. "Multi-criteria optimization for last mile distribution of disaster relief aid: Test cases and applications," European Journal of Operational Research, Elsevier, vol. 269(2), pages 501-515.
    12. R. Baldacci & E. Hadjiconstantinou & A. Mingozzi, 2004. "An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation," Operations Research, INFORMS, vol. 52(5), pages 723-738, October.
    13. Roberto Tadei & Guido Perboli & Francesca Perfetti, 2017. "The multi-path Traveling Salesman Problem with stochastic travel costs," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 3-23, March.
    14. Jesus Garcia-Diaz & Jairo Sanchez-Hernandez & Ricardo Menchaca-Mendez & Rolando Menchaca-Mendez, 2017. "When a worse approximation factor gives better performance: a 3-approximation algorithm for the vertex k-center problem," Journal of Heuristics, Springer, vol. 23(5), pages 349-366, October.
    15. Thomas R. Visser & Remy Spliet, 2020. "Efficient Move Evaluations for Time-Dependent Vehicle Routing Problems," Transportation Science, INFORMS, vol. 54(4), pages 1091-1112, July.
    16. Fatih Rahim & Canan Sepil, 2014. "A location-routing problem in glass recycling," Annals of Operations Research, Springer, vol. 223(1), pages 329-353, December.
    17. F J Vasko & J D Bobeck & M A Governale & D J Rieksts & J D Keffer, 2011. "A statistical analysis of parameter values for the rank-based ant colony optimization algorithm for the traveling salesperson problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1169-1176, June.
    18. Francesco Carrabs & Jean-François Cordeau & Gilbert Laporte, 2007. "Variable Neighborhood Search for the Pickup and Delivery Traveling Salesman Problem with LIFO Loading," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 618-632, November.
    19. J Renaud & F F Boctor & G Laporte, 2004. "Efficient heuristics for Median Cycle Problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 179-186, February.
    20. Mauricio Resende & Renato Werneck, 2007. "A fast swap-based local search procedure for location problems," Annals of Operations Research, Springer, vol. 150(1), pages 205-230, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:72:y:2018:i:4:d:10.1007_s10898-018-0671-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.