IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v88y2024i3d10.1007_s10589-024-00578-4.html
   My bibliography  Save this article

A boosted DC algorithm for non-differentiable DC components with non-monotone line search

Author

Listed:
  • O. P. Ferreira

    (UFG, Instituto de Matemática e Estatística)

  • E. M. Santos

    (Ciência e Tecnologia do Maranhão)

  • J. C. O. Souza

    (Aix-Marseille University
    Federal University of Piauí)

Abstract

We introduce a new approach to apply the boosted difference of convex functions algorithm (BDCA) for solving non-convex and non-differentiable problems involving difference of two convex functions (DC functions). Supposing the first DC component differentiable and the second one possibly non-differentiable, the main idea of BDCA is to use the point computed by the subproblem of the DC algorithm (DCA) to define a descent direction of the objective from that point, and then a monotone line search starting from it is performed in order to find a new point which decreases the objective function when compared with the point generated by the subproblem of DCA. This procedure improves the performance of the DCA. However, if the first DC component is non-differentiable, then the direction computed by BDCA can be an ascent direction and a monotone line search cannot be performed. Our approach uses a non-monotone line search in the BDCA (nmBDCA) to enable a possible growth in the objective function values controlled by a parameter. Under suitable assumptions, we show that any cluster point of the sequence generated by the nmBDCA is a critical point of the problem under consideration and provides some iteration-complexity bounds. Furthermore, if the first DC component is differentiable, we present different iteration-complexity bounds and prove the full convergence of the sequence under the Kurdyka–Łojasiewicz property of the objective function. Some numerical experiments show that the nmBDCA outperforms the DCA, such as its monotone version.

Suggested Citation

  • O. P. Ferreira & E. M. Santos & J. C. O. Souza, 2024. "A boosted DC algorithm for non-differentiable DC components with non-monotone line search," Computational Optimization and Applications, Springer, vol. 88(3), pages 783-818, July.
  • Handle: RePEc:spr:coopap:v:88:y:2024:i:3:d:10.1007_s10589-024-00578-4
    DOI: 10.1007/s10589-024-00578-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00578-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00578-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Bagirov & J. Ugon, 2011. "Codifferential method for minimizing nonsmooth DC functions," Journal of Global Optimization, Springer, vol. 50(1), pages 3-22, May.
    2. Yldenilson Torres Almeida & João Xavier Cruz Neto & Paulo Roberto Oliveira & João Carlos de Oliveira Souza, 2020. "A modified proximal point method for DC functions on Hadamard manifolds," Computational Optimization and Applications, Springer, vol. 76(3), pages 649-673, July.
    3. J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
    4. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    5. W. Geremew & N. M. Nam & A. Semenov & V. Boginski & E. Pasiliao, 2018. "A DC programming approach for solving multicast network design problems via the Nesterov smoothing technique," Journal of Global Optimization, Springer, vol. 72(4), pages 705-729, December.
    6. João Carlos O. Souza & Paulo Roberto Oliveira & Antoine Soubeyran, 2016. "Global convergence of a proximal linearized algorithm for difference of convex functions," Post-Print hal-01440298, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João S. Andrade & Jurandir de O. Lopes & João Carlos de O. Souza, 2023. "An inertial proximal point method for difference of maximal monotone vector fields in Hadamard manifolds," Journal of Global Optimization, Springer, vol. 85(4), pages 941-968, April.
    2. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico & Adil M. Bagirov, 2018. "Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations," Journal of Global Optimization, Springer, vol. 71(1), pages 37-55, May.
    3. A. M. Bagirov & N. Hoseini Monjezi & S. Taheri, 2021. "An augmented subgradient method for minimizing nonsmooth DC functions," Computational Optimization and Applications, Springer, vol. 80(2), pages 411-438, November.
    4. Welington Oliveira, 2020. "Sequential Difference-of-Convex Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 936-959, September.
    5. Kai Tu & Haibin Zhang & Huan Gao & Junkai Feng, 2020. "A hybrid Bregman alternating direction method of multipliers for the linearly constrained difference-of-convex problems," Journal of Global Optimization, Springer, vol. 76(4), pages 665-693, April.
    6. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    7. W. Ackooij & S. Demassey & P. Javal & H. Morais & W. Oliveira & B. Swaminathan, 2021. "A bundle method for nonsmooth DC programming with application to chance-constrained problems," Computational Optimization and Applications, Springer, vol. 78(2), pages 451-490, March.
    8. Butyn, Emerson & Karas, Elizabeth W. & de Oliveira, Welington, 2022. "A derivative-free trust-region algorithm with copula-based models for probability maximization problems," European Journal of Operational Research, Elsevier, vol. 298(1), pages 59-75.
    9. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    10. Majid Fakhar & Mohammadreza Khodakhah & Ali Mazyaki & Antoine Soubeyran & Jafar Zafarani, 2022. "Variational rationality, variational principles and the existence of traps in a changing environment," Journal of Global Optimization, Springer, vol. 82(1), pages 161-177, January.
    11. M. V. Dolgopolik, 2020. "New global optimality conditions for nonsmooth DC optimization problems," Journal of Global Optimization, Springer, vol. 76(1), pages 25-55, January.
    12. Christian Kanzow & Tanja Neder, 2024. "A bundle-type method for nonsmooth DC programs," Journal of Global Optimization, Springer, vol. 88(2), pages 285-326, February.
    13. Antoine Soubeyran, 2022. "Variational rationality. Self regulation success as a succession of worthwhile moves that make sufficient progress," Working Papers hal-04041238, HAL.
    14. Marah-Lisanne Thormann & Phan Tu Vuong & Alain B. Zemkoho, 2024. "The Boosted Difference of Convex Functions Algorithm for Value-at-Risk Constrained Portfolio Optimization," Papers 2402.09194, arXiv.org.
    15. Hoai An Le Thi & Vinh Thanh Ho & Tao Pham Dinh, 2019. "A unified DC programming framework and efficient DCA based approaches for large scale batch reinforcement learning," Journal of Global Optimization, Springer, vol. 73(2), pages 279-310, February.
    16. Liping Pang & Xiaoliang Wang & Fanyun Meng, 2023. "A proximal bundle method for a class of nonconvex nonsmooth composite optimization problems," Journal of Global Optimization, Springer, vol. 86(3), pages 589-620, July.
    17. Wim Ackooij & Welington Oliveira, 2019. "Nonsmooth and Nonconvex Optimization via Approximate Difference-of-Convex Decompositions," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 49-80, July.
    18. J. X. Cruz Neto & J. O. Lopes & A. Soubeyran & J. C. O. Souza, 2022. "Abstract regularized equilibria: application to Becker’s household behavior theory," Annals of Operations Research, Springer, vol. 316(2), pages 1279-1300, September.
    19. Harry Oviedo, 2023. "Proximal Point Algorithm with Euclidean Distance on the Stiefel Manifold," Mathematics, MDPI, vol. 11(11), pages 1-17, May.
    20. Yldenilson Torres Almeida & João Xavier Cruz Neto & Paulo Roberto Oliveira & João Carlos de Oliveira Souza, 2020. "A modified proximal point method for DC functions on Hadamard manifolds," Computational Optimization and Applications, Springer, vol. 76(3), pages 649-673, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:88:y:2024:i:3:d:10.1007_s10589-024-00578-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.