IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v76y2020i1d10.1007_s10898-019-00833-7.html
   My bibliography  Save this article

New global optimality conditions for nonsmooth DC optimization problems

Author

Listed:
  • M. V. Dolgopolik

    (Russian Academy of Sciences)

Abstract

In this article we propose a new approach to an analysis of DC optimization problems. This approach was largely inspired by codifferential calculus and the method of codifferential descent and is based on the use of a so-called affine support set of a convex function instead of the Frenchel conjugate function. With the use of affine support sets we define a global codifferential mapping of a DC function and derive new necessary and sufficient global optimality conditions for DC optimization problems. We also provide new simple necessary and sufficient conditions for the global exactness of the $$\ell _1$$ℓ1 penalty function for DC optimization problems with equality and inequality constraints and present a series of simple examples demonstrating a constructive nature of the new global optimality conditions. These examples show that when the optimality conditions are not satisfied, they can be easily utilised in order to find “global descent” directions of both constrained and unconstrained problems. As an interesting theoretical example, we apply our approach to the analysis of a nonsmooth problem of Bolza.

Suggested Citation

  • M. V. Dolgopolik, 2020. "New global optimality conditions for nonsmooth DC optimization problems," Journal of Global Optimization, Springer, vol. 76(1), pages 25-55, January.
  • Handle: RePEc:spr:jglopt:v:76:y:2020:i:1:d:10.1007_s10898-019-00833-7
    DOI: 10.1007/s10898-019-00833-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00833-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00833-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander S. Strekalovsky, 2017. "Global Optimality Conditions in Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 770-792, June.
    2. R. Horst & N. V. Thoai, 1999. "DC Programming: Overview," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 1-43, October.
    3. Qinghua Zhang, 2013. "A new necessary and sufficient global optimality condition for canonical DC problems," Journal of Global Optimization, Springer, vol. 55(3), pages 559-577, March.
    4. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
    5. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico & Adil M. Bagirov, 2018. "Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations," Journal of Global Optimization, Springer, vol. 71(1), pages 37-55, May.
    6. Kaisa Joki & Adil M. Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2017. "A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes," Journal of Global Optimization, Springer, vol. 68(3), pages 501-535, July.
    7. A. Bagirov & J. Ugon, 2011. "Codifferential method for minimizing nonsmooth DC functions," Journal of Global Optimization, Springer, vol. 50(1), pages 3-22, May.
    8. Hoai Le Thi & Tao Pham Dinh & Huynh Ngai, 2012. "Exact penalty and error bounds in DC programming," Journal of Global Optimization, Springer, vol. 52(3), pages 509-535, March.
    9. M. V. Dolgopolik, 2018. "A convergence analysis of the method of codifferential descent," Computational Optimization and Applications, Springer, vol. 71(3), pages 879-913, December.
    10. H. Tuy, 2003. "On Global Optimality Conditions and Cutting Plane Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 118(1), pages 201-216, July.
    11. Giancarlo Bigi & Antonio Frangioni & Qinghua Zhang, 2010. "Outer approximation algorithms for canonical DC problems," Journal of Global Optimization, Springer, vol. 46(2), pages 163-189, February.
    12. Strekalovsky, Alexander S., 2015. "On local search in d.c. optimization problems," Applied Mathematics and Computation, Elsevier, vol. 255(C), pages 73-83.
    13. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions II: Extended Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 745-762, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingrang Xu & Shengjie Li, 2022. "Optimality and Duality for DC Programming with DC Inequality and DC Equality Constraints," Mathematics, MDPI, vol. 10(4), pages 1-14, February.
    2. Kabgani, Alireza & Soleimani-damaneh, Majid, 2022. "Semi-quasidifferentiability in nonsmooth nonconvex multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 299(1), pages 35-45.
    3. Abdelghali Ammar & Mohamed Laghdir & Ahmed Ed-dahdah & Mohamed Hanine, 2023. "Approximate Subdifferential of the Difference of Two Vector Convex Mappings," Mathematics, MDPI, vol. 11(12), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. M. Bagirov & N. Hoseini Monjezi & S. Taheri, 2021. "An augmented subgradient method for minimizing nonsmooth DC functions," Computational Optimization and Applications, Springer, vol. 80(2), pages 411-438, November.
    2. M. V. Dolgopolik, 2022. "DC Semidefinite programming and cone constrained DC optimization I: theory," Computational Optimization and Applications, Springer, vol. 82(3), pages 649-671, July.
    3. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    4. Kaisa Joki & Adil M. Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2017. "A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes," Journal of Global Optimization, Springer, vol. 68(3), pages 501-535, July.
    5. Joki, Kaisa & Bagirov, Adil M. & Karmitsa, Napsu & Mäkelä, Marko M. & Taheri, Sona, 2020. "Clusterwise support vector linear regression," European Journal of Operational Research, Elsevier, vol. 287(1), pages 19-35.
    6. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico & Adil M. Bagirov, 2018. "Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations," Journal of Global Optimization, Springer, vol. 71(1), pages 37-55, May.
    7. Liping Pang & Xiaoliang Wang & Fanyun Meng, 2023. "A proximal bundle method for a class of nonconvex nonsmooth composite optimization problems," Journal of Global Optimization, Springer, vol. 86(3), pages 589-620, July.
    8. Wim Ackooij & Welington Oliveira, 2019. "Nonsmooth and Nonconvex Optimization via Approximate Difference-of-Convex Decompositions," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 49-80, July.
    9. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    10. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2023. "Sparse optimization via vector k-norm and DC programming with an application to feature selection for support vector machines," Computational Optimization and Applications, Springer, vol. 86(2), pages 745-766, November.
    11. Najmeh Hoseini Monjezi & S. Nobakhtian, 2021. "A filter proximal bundle method for nonsmooth nonconvex constrained optimization," Journal of Global Optimization, Springer, vol. 79(1), pages 1-37, January.
    12. Pietro D’Alessandro & Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2024. "The Descent–Ascent Algorithm for DC Programming," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 657-671, March.
    13. Qinghua Zhang, 2013. "A new necessary and sufficient global optimality condition for canonical DC problems," Journal of Global Optimization, Springer, vol. 55(3), pages 559-577, March.
    14. Welington Oliveira, 2020. "Sequential Difference-of-Convex Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 936-959, September.
    15. Hoai An Le Thi & Vinh Thanh Ho & Tao Pham Dinh, 2019. "A unified DC programming framework and efficient DCA based approaches for large scale batch reinforcement learning," Journal of Global Optimization, Springer, vol. 73(2), pages 279-310, February.
    16. Outi Montonen & Kaisa Joki, 2018. "Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints," Journal of Global Optimization, Springer, vol. 72(3), pages 403-429, November.
    17. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    18. Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2014. "Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation," Papers 1408.6070, arXiv.org, revised Aug 2015.
    19. Nadja Harms & Tim Hoheisel & Christian Kanzow, 2015. "On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 659-685, August.
    20. João Carlos O. Souza & Paulo Roberto Oliveira & Antoine Soubeyran, 2016. "Global convergence of a proximal linearized algorithm for difference of convex functions," Post-Print hal-01440298, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:76:y:2020:i:1:d:10.1007_s10898-019-00833-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.