IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v46y2023i1d10.1007_s10878-023-01066-x.html
   My bibliography  Save this article

New mixed integer linear programming models and an iterated local search for the clustered traveling salesman problem with relaxed priority rule

Author

Listed:
  • Thanh Tan Doan

    (Université de Nantes
    Phenikaa University)

  • Nathalie Bostel

    (Université de Nantes)

  • Minh Hoàng Hà

    (Phenikaa University)

  • Vu Hoang Vuong Nguyen

    (VNU University of Engineering and Technology)

Abstract

The Traveling Salesman Problem (TSP) is a well known problem in operations research with various studies and applications. In this paper, we address a variant of the TSP in which the customers are divided into several priority groups and the order of servicing groups can be flexibly changed with a rule called the d-relaxed priority rule. The problem is called the Clustered Traveling Salesman Problem with Relaxed Priority Rule (CTSP-d). We propose two new Mixed Integer Linear Programming (MILP) models for the CTSP-d and a metaheuristic based on Iterated Local Search (ILS) with operators designed for or adapted to the problem. The experimental results obtained on the benchmark instances show that two new models performs better than previous ones, and ILS also proves its performance with 13 new best known solutions found and significant stability compared to existing metaheuristics.

Suggested Citation

  • Thanh Tan Doan & Nathalie Bostel & Minh Hoàng Hà & Vu Hoang Vuong Nguyen, 2023. "New mixed integer linear programming models and an iterated local search for the clustered traveling salesman problem with relaxed priority rule," Journal of Combinatorial Optimization, Springer, vol. 46(1), pages 1-27, August.
  • Handle: RePEc:spr:jcomop:v:46:y:2023:i:1:d:10.1007_s10878-023-01066-x
    DOI: 10.1007/s10878-023-01066-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-023-01066-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-023-01066-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerhard Reinelt, 1991. "TSPLIB—A Traveling Salesman Problem Library," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 376-384, November.
    2. G Laporte & U Palekar, 2002. "Some applications of the clustered travelling salesman problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(9), pages 972-976, September.
    3. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pop, Petrică C. & Cosma, Ovidiu & Sabo, Cosmin & Sitar, Corina Pop, 2024. "A comprehensive survey on the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 314(3), pages 819-835.
    2. Leticia Vargas & Nicolas Jozefowiez & Sandra Ulrich Ngueveu, 2017. "A dynamic programming operator for tour location problems applied to the covering tour problem," Journal of Heuristics, Springer, vol. 23(1), pages 53-80, February.
    3. William Cook & Sanjeeb Dash & Ricardo Fukasawa & Marcos Goycoolea, 2009. "Numerically Safe Gomory Mixed-Integer Cuts," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 641-649, November.
    4. Thiago Serra & Ryan J. O’Neil, 2020. "MIPLIBing: Seamless Benchmarking of Mathematical Optimization Problems and Metadata Extensions," SN Operations Research Forum, Springer, vol. 1(3), pages 1-6, September.
    5. Barbato, Michele & Gouveia, Luís, 2024. "The Hamiltonian p-median problem: Polyhedral results and branch-and-cut algorithms," European Journal of Operational Research, Elsevier, vol. 316(2), pages 473-487.
    6. S Salhi & A Al-Khedhairi, 2010. "Integrating heuristic information into exact methods: The case of the vertex p-centre problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1619-1631, November.
    7. Marilène Cherkesly & Claudio Contardo, 2021. "The conditional p-dispersion problem," Journal of Global Optimization, Springer, vol. 81(1), pages 23-83, September.
    8. Malaguti, Enrico & Martello, Silvano & Santini, Alberto, 2018. "The traveling salesman problem with pickups, deliveries, and draft limits," Omega, Elsevier, vol. 74(C), pages 50-58.
    9. Bernardino, Raquel & Paias, Ana, 2018. "Solving the family traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 267(2), pages 453-466.
    10. Ernst Althaus & Felix Rauterberg & Sarah Ziegler, 2020. "Computing Euclidean Steiner trees over segments," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 309-325, October.
    11. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    12. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    13. Marjan Marzban & Qian-Ping Gu & Xiaohua Jia, 2016. "New analysis and computational study for the planar connected dominating set problem," Journal of Combinatorial Optimization, Springer, vol. 32(1), pages 198-225, July.
    14. Ferrer, José M. & Martín-Campo, F. Javier & Ortuño, M. Teresa & Pedraza-Martínez, Alfonso J. & Tirado, Gregorio & Vitoriano, Begoña, 2018. "Multi-criteria optimization for last mile distribution of disaster relief aid: Test cases and applications," European Journal of Operational Research, Elsevier, vol. 269(2), pages 501-515.
    15. R. Baldacci & E. Hadjiconstantinou & A. Mingozzi, 2004. "An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation," Operations Research, INFORMS, vol. 52(5), pages 723-738, October.
    16. Roberto Tadei & Guido Perboli & Francesca Perfetti, 2017. "The multi-path Traveling Salesman Problem with stochastic travel costs," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 3-23, March.
    17. Jesus Garcia-Diaz & Jairo Sanchez-Hernandez & Ricardo Menchaca-Mendez & Rolando Menchaca-Mendez, 2017. "When a worse approximation factor gives better performance: a 3-approximation algorithm for the vertex k-center problem," Journal of Heuristics, Springer, vol. 23(5), pages 349-366, October.
    18. Thomas R. Visser & Remy Spliet, 2020. "Efficient Move Evaluations for Time-Dependent Vehicle Routing Problems," Transportation Science, INFORMS, vol. 54(4), pages 1091-1112, July.
    19. Fatih Rahim & Canan Sepil, 2014. "A location-routing problem in glass recycling," Annals of Operations Research, Springer, vol. 223(1), pages 329-353, December.
    20. F J Vasko & J D Bobeck & M A Governale & D J Rieksts & J D Keffer, 2011. "A statistical analysis of parameter values for the rank-based ant colony optimization algorithm for the traveling salesperson problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1169-1176, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:46:y:2023:i:1:d:10.1007_s10878-023-01066-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.