IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v70y2018i3d10.1007_s10898-017-0558-1.html
   My bibliography  Save this article

Completely positive and completely positive semidefinite tensor relaxations for polynomial optimization

Author

Listed:
  • Xiaolong Kuang

    (Lehigh University)

  • Luis F. Zuluaga

    (Lehigh University)

Abstract

Completely positive (CP) tensors, which correspond to a generalization of CP matrices, allow to reformulate or approximate a general polynomial optimization problem (POP) with a conic optimization problem over the cone of CP tensors. Similarly, completely positive semidefinite (CPSD) tensors, which correspond to a generalization of positive semidefinite (PSD) matrices, can be used to approximate general POPs with a conic optimization problem over the cone of CPSD tensors. In this paper, we study CP and CPSD tensor relaxations for general POPs and compare them with the bounds obtained via a Lagrangian relaxation of the POPs. This shows that existing results in this direction for quadratic POPs extend to general POPs. Also, we provide some tractable approximation strategies for CP and CPSD tensor relaxations. These approximation strategies show that, with a similar computational effort, bounds obtained from them for general POPs can be tighter than bounds for these problems obtained by reformulating the POP as a quadratic POP, which subsequently can be approximated using CP and PSD matrices. To illustrate our results, we numerically compare the bounds obtained from these relaxation approaches on small scale fourth-order degree POPs.

Suggested Citation

  • Xiaolong Kuang & Luis F. Zuluaga, 2018. "Completely positive and completely positive semidefinite tensor relaxations for polynomial optimization," Journal of Global Optimization, Springer, vol. 70(3), pages 551-577, March.
  • Handle: RePEc:spr:jglopt:v:70:y:2018:i:3:d:10.1007_s10898-017-0558-1
    DOI: 10.1007/s10898-017-0558-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0558-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0558-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mavridou, T. & Pardalos, P.M. & Pitsoulis, L.S. & Resende, Mauricio G.C., 1998. "A GRASP for the biquadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 105(3), pages 613-621, March.
    2. de Klerk, E. & Pasechnik, D.V., 2005. "A Linear Programming Reformulation of the Standard Quadratic Optimization Problem," Discussion Paper 2005-24, Tilburg University, Center for Economic Research.
    3. Faizan Ahmed & Mirjam Dür & Georg Still, 2013. "Copositive Programming via Semi-Infinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 322-340, November.
    4. Naohiko Arima & Sunyoung Kim & Masakazu Kojima, 2016. "Extension of Completely Positive Cone Relaxation to Moment Cone Relaxation for Polynomial Optimization," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 884-900, March.
    5. de Klerk, E. & Pasechnik, D.V., 2007. "A linear programming reformulation of the standard quadratic optimization problem," Other publications TiSEM c3e74115-b343-4a85-976b-8, Tilburg University, School of Economics and Management.
    6. Peter J. C. Dickinson & Janez Povh, 2013. "Moment Approximations for Set-Semidefinite Polynomials," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 57-68, October.
    7. NESTEROV, Yurii, 1997. "Structure of non-negative polynomials and optimization problems," LIDAM Discussion Papers CORE 1997049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González-Rodríguez, Brais & Naoum-Sawaya, Joe, 2025. "Degree reduction techniques for polynomial optimization problems," European Journal of Operational Research, Elsevier, vol. 322(2), pages 401-413.
    2. Anwa Zhou & Jinyan Fan, 2019. "A hierarchy of semidefinite relaxations for completely positive tensor optimization problems," Journal of Global Optimization, Springer, vol. 75(2), pages 417-437, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bomze, Immanuel M., 2012. "Copositive optimization – Recent developments and applications," European Journal of Operational Research, Elsevier, vol. 216(3), pages 509-520.
    2. X. J. Zheng & X. L. Sun & D. Li, 2010. "Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 463-489, August.
    3. Walteros, Jose L. & Vogiatzis, Chrysafis & Pasiliao, Eduardo L. & Pardalos, Panos M., 2014. "Integer programming models for the multidimensional assignment problem with star costs," European Journal of Operational Research, Elsevier, vol. 235(3), pages 553-568.
    4. Richárd Molnár-Szipai & Anita Varga, 2019. "Integrating combinatorial algorithms into a linear programming solver," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 475-482, June.
    5. Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
    6. Bock, Stefan & Hoberg, Kai, 2007. "Detailed layout planning for irregularly-shaped machines with transportation path design," European Journal of Operational Research, Elsevier, vol. 177(2), pages 693-718, March.
    7. O. I. Kostyukova & T. V. Tchemisova, 2022. "On strong duality in linear copositive programming," Journal of Global Optimization, Springer, vol. 83(3), pages 457-480, July.
    8. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    9. M. A. Goberna & M. A. López, 2018. "Recent contributions to linear semi-infinite optimization: an update," Annals of Operations Research, Springer, vol. 271(1), pages 237-278, December.
    10. Mitsuhiro Nishijima & Kazuhide Nakata, 2024. "Approximation hierarchies for copositive cone over symmetric cone and their comparison," Journal of Global Optimization, Springer, vol. 88(4), pages 831-870, April.
    11. Susan Heath & Jonathan Bard & Douglas Morrice, 2013. "A GRASP for simultaneously assigning and sequencing product families on flexible assembly lines," Annals of Operations Research, Springer, vol. 203(1), pages 295-323, March.
    12. Pitsoulis, Leonidas S. & Pardalos, Panos M. & Hearn, Donald W., 2001. "Approximate solutions to the turbine balancing problem," European Journal of Operational Research, Elsevier, vol. 130(1), pages 147-155, April.
    13. Renata M. Aiex & Mauricio G. C. Resende & Panos M. Pardalos & Gerardo Toraldo, 2005. "GRASP with Path Relinking for Three-Index Assignment," INFORMS Journal on Computing, INFORMS, vol. 17(2), pages 224-247, May.
    14. Berman, Oded & Sanajian, Nima & Wang, Jiamin, 2017. "Location choice and risk attitude of a decision maker," Omega, Elsevier, vol. 66(PA), pages 170-181.
    15. Mirjam Dür & Bolor Jargalsaikhan & Georg Still, 2017. "Genericity Results in Linear Conic Programming—A Tour d’Horizon," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 77-94, January.
    16. Ho-Yin Mak & Ying Rong & Jiawei Zhang, 2015. "Appointment Scheduling with Limited Distributional Information," Management Science, INFORMS, vol. 61(2), pages 316-334, February.
    17. Olga Kostyukova & Tatiana Tchemisova, 2017. "Optimality Conditions for Convex Semi-infinite Programming Problems with Finitely Representable Compact Index Sets," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 76-103, October.
    18. Teles, João P. & Castro, Pedro M. & Matos, Henrique A., 2013. "Univariate parameterization for global optimization of mixed-integer polynomial problems," European Journal of Operational Research, Elsevier, vol. 229(3), pages 613-625.
    19. Ioana Popescu, 2005. "A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 632-657, August.
    20. E. Alper Yıldırım, 2022. "An alternative perspective on copositive and convex relaxations of nonconvex quadratic programs," Journal of Global Optimization, Springer, vol. 82(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:70:y:2018:i:3:d:10.1007_s10898-017-0558-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.