IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v88y2024i4d10.1007_s10898-023-01319-3.html
   My bibliography  Save this article

Approximation hierarchies for copositive cone over symmetric cone and their comparison

Author

Listed:
  • Mitsuhiro Nishijima

    (Tokyo Institute of Technology)

  • Kazuhide Nakata

    (Tokyo Institute of Technology)

Abstract

We first provide an inner-approximation hierarchy described by a sum-of-squares (SOS) constraint for the copositive (COP) cone over a general symmetric cone. The hierarchy is a generalization of that proposed by Parrilo (Structured semidefinite programs and semialgebraic geometry methods in Robustness and optimization, Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 2000) for the usual COP cone (over a nonnegative orthant). We also discuss its dual. Second, we characterize the COP cone over a symmetric cone using the usual COP cone. By replacing the usual COP cone appearing in this characterization with the inner- or outer-approximation hierarchy provided by de Klerk and Pasechnik (SIAM J Optim 12(4):875–892, https://doi.org/10.1137/S1052623401383248 , 2002) or Yıldırım (Optim Methods Softw 27(1):155–173, https://doi.org/10.1080/10556788.2010.540014 , 2012), we obtain an inner- or outer-approximation hierarchy described by semidefinite but not by SOS constraints for the COP matrix cone over the direct product of a nonnegative orthant and a second-order cone. We then compare them with the existing hierarchies provided by Zuluaga et al. (SIAM J Optim 16(4):1076–1091, https://doi.org/10.1137/03060151X , 2006) and Lasserre (Math Program 144:265–276, https://doi.org/10.1007/s10107-013-0632-5 , 2014). Theoretical and numerical examinations imply that we can numerically increase a depth parameter, which determines an approximation accuracy, in the approximation hierarchies derived from de Klerk and Pasechnik (SIAM J Optim 12(4):875–892, https://doi.org/10.1137/S1052623401383248 , 2002) and Yıldırım (Optim Methods Softw 27(1):155–173, https://doi.org/10.1080/10556788.2010.540014 , 2012), particularly when the nonnegative orthant is small. In such a case, the approximation hierarchy derived from Yıldırım (Optim Methods Softw 27(1):155–173, https://doi.org/10.1080/10556788.2010.540014 , 2012) can yield nearly optimal values numerically. Combining the proposed approximation hierarchies with existing ones, we can evaluate the optimal value of COP programming problems more accurately and efficiently.

Suggested Citation

  • Mitsuhiro Nishijima & Kazuhide Nakata, 2024. "Approximation hierarchies for copositive cone over symmetric cone and their comparison," Journal of Global Optimization, Springer, vol. 88(4), pages 831-870, April.
  • Handle: RePEc:spr:jglopt:v:88:y:2024:i:4:d:10.1007_s10898-023-01319-3
    DOI: 10.1007/s10898-023-01319-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01319-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01319-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Seetharama Gowda, 2019. "Weighted LCPs and interior point systems for copositive linear transformations on Euclidean Jordan algebras," Journal of Global Optimization, Springer, vol. 74(2), pages 285-295, June.
    2. João Gouveia & Ting Kei Pong & Mina Saee, 2020. "Inner approximating the completely positive cone via the cone of scaled diagonally dominant matrices," Journal of Global Optimization, Springer, vol. 76(2), pages 383-405, February.
    3. Sunyoung Kim & Masakazu Kojima, 2010. "Solving polynomial least squares problems via semidefinite programming relaxations," Journal of Global Optimization, Springer, vol. 46(1), pages 1-23, January.
    4. Jos F. Sturm & Shuzhong Zhang, 2003. "On Cones of Nonnegative Quadratic Functions," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 246-267, May.
    5. Peter J. C. Dickinson & Janez Povh, 2013. "Moment Approximations for Set-Semidefinite Polynomials," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 57-68, October.
    6. Muhammad Faisal Iqbal & Faizan Ahmed, 2022. "Approximation Hierarchies for the Copositive Tensor Cone and Their Application to the Polynomial Optimization over the Simplex," Mathematics, MDPI, vol. 10(10), pages 1-17, May.
    7. Man-Man Dong & Hai-Bin Chen, 2020. "Geometry of the Copositive Tensor Cone and its Dual," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(04), pages 1-11, August.
    8. Anwa Zhou & Jinyan Fan, 2019. "A hierarchy of semidefinite relaxations for completely positive tensor optimization problems," Journal of Global Optimization, Springer, vol. 75(2), pages 417-437, October.
    9. Miyashiro, Ryuhei & Takano, Yuichi, 2015. "Mixed integer second-order cone programming formulations for variable selection in linear regression," European Journal of Operational Research, Elsevier, vol. 247(3), pages 721-731.
    10. Julia Sponsel & Stefan Bundfuss & Mirjam Dür, 2012. "An improved algorithm to test copositivity," Journal of Global Optimization, Springer, vol. 52(3), pages 537-551, March.
    11. Peter Dickinson & Luuk Gijben, 2014. "On the computational complexity of membership problems for the completely positive cone and its dual," Computational Optimization and Applications, Springer, vol. 57(2), pages 403-415, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
    2. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2017. "Copositivity Detection of Tensors: Theory and Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 746-761, September.
    3. Paula Alexandra Amaral & Immanuel M. Bomze, 2019. "Nonconvex min–max fractional quadratic problems under quadratic constraints: copositive relaxations," Journal of Global Optimization, Springer, vol. 75(2), pages 227-245, October.
    4. Gizem Sağol & E. Yıldırım, 2015. "Analysis of copositive optimization based linear programming bounds on standard quadratic optimization," Journal of Global Optimization, Springer, vol. 63(1), pages 37-59, September.
    5. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2018. "Copositive tensor detection and its applications in physics and hypergraphs," Computational Optimization and Applications, Springer, vol. 69(1), pages 133-158, January.
    6. Akihiro Tanaka & Akiko Yoshise, 2018. "LP-based tractable subcones of the semidefinite plus nonnegative cone," Annals of Operations Research, Springer, vol. 265(1), pages 155-182, June.
    7. Moslem Zamani, 2019. "A new algorithm for concave quadratic programming," Journal of Global Optimization, Springer, vol. 75(3), pages 655-681, November.
    8. Shinji Yamada & Akiko Takeda, 2018. "Successive Lagrangian relaxation algorithm for nonconvex quadratic optimization," Journal of Global Optimization, Springer, vol. 71(2), pages 313-339, June.
    9. Serrano, Breno & Minner, Stefan & Schiffer, Maximilian & Vidal, Thibaut, 2024. "Bilevel optimization for feature selection in the data-driven newsvendor problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 703-714.
    10. Jinyan Fan & Jiawang Nie & Anwa Zhou, 2019. "Completely Positive Binary Tensors," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1087-1100, August.
    11. Ben-Tal, A. & den Hertog, D., 2011. "Immunizing Conic Quadratic Optimization Problems Against Implementation Errors," Discussion Paper 2011-060, Tilburg University, Center for Economic Research.
    12. Tao Xu & He Meng & Jie Zhu & Wei Wei & He Zhao & Han Yang & Zijin Li & Yuhan Wu, 2021. "Optimal Capacity Allocation of Energy Storage in Distribution Networks Considering Active/Reactive Coordination," Energies, MDPI, vol. 14(6), pages 1-24, March.
    13. Immanuel M. Bomze & Vaithilingam Jeyakumar & Guoyin Li, 2018. "Extended trust-region problems with one or two balls: exact copositive and Lagrangian relaxations," Journal of Global Optimization, Springer, vol. 71(3), pages 551-569, July.
    14. Mohammadreza Safi & Seyed Saeed Nabavi & Richard J. Caron, 2021. "A modified simplex partition algorithm to test copositivity," Journal of Global Optimization, Springer, vol. 81(3), pages 645-658, November.
    15. Xinzhen Zhang & Chen Ling & Liqun Qi, 2011. "Semidefinite relaxation bounds for bi-quadratic optimization problems with quadratic constraints," Journal of Global Optimization, Springer, vol. 49(2), pages 293-311, February.
    16. Yuzhu Wang & Akihiro Tanaka & Akiko Yoshise, 2021. "Polyhedral approximations of the semidefinite cone and their application," Computational Optimization and Applications, Springer, vol. 78(3), pages 893-913, April.
    17. Ben-Ameur, Walid & Neto, José, 2022. "New bounds for subset selection from conic relaxations," European Journal of Operational Research, Elsevier, vol. 298(2), pages 425-438.
    18. Orizon Pereira Ferreira & Yingchao Gao & Sándor Zoltán Németh & Petra Renáta Rigó, 2024. "Gradient projection method on the sphere, complementarity problems and copositivity," Journal of Global Optimization, Springer, vol. 90(1), pages 1-25, September.
    19. Leonardo Di Gangi & M. Lapucci & F. Schoen & A. Sortino, 2019. "An efficient optimization approach for best subset selection in linear regression, with application to model selection and fitting in autoregressive time-series," Computational Optimization and Applications, Springer, vol. 74(3), pages 919-948, December.
    20. Riley Badenbroek & Etienne de Klerk, 2022. "An Analytic Center Cutting Plane Method to Determine Complete Positivity of a Matrix," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1115-1125, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:88:y:2024:i:4:d:10.1007_s10898-023-01319-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.