IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v159y2013i2d10.1007_s10957-013-0344-2.html
   My bibliography  Save this article

Copositive Programming via Semi-Infinite Optimization

Author

Listed:
  • Faizan Ahmed

    (University of Twente)

  • Mirjam Dür

    (University of Trier)

  • Georg Still

    (University of Twente)

Abstract

Copositive programming (CP) can be regarded as a special instance of linear semi-infinite programming (SIP). We study CP from the viewpoint of SIP and discuss optimality and duality results. Different approximation schemes for solving CP are interpreted as discretization schemes in SIP. This leads to sharp explicit error bounds for the values and solutions in dependence on the mesh size. Examples illustrate the structure of the original program and the approximation schemes.

Suggested Citation

  • Faizan Ahmed & Mirjam Dür & Georg Still, 2013. "Copositive Programming via Semi-Infinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 322-340, November.
  • Handle: RePEc:spr:joptap:v:159:y:2013:i:2:d:10.1007_s10957-013-0344-2
    DOI: 10.1007/s10957-013-0344-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0344-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0344-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaolong Kuang & Luis F. Zuluaga, 2018. "Completely positive and completely positive semidefinite tensor relaxations for polynomial optimization," Journal of Global Optimization, Springer, vol. 70(3), pages 551-577, March.
    2. O. I. Kostyukova & T. V. Tchemisova, 2022. "On strong duality in linear copositive programming," Journal of Global Optimization, Springer, vol. 83(3), pages 457-480, July.
    3. M. A. Goberna & M. A. López, 2018. "Recent contributions to linear semi-infinite optimization: an update," Annals of Operations Research, Springer, vol. 271(1), pages 237-278, December.
    4. Mirjam Dür & Bolor Jargalsaikhan & Georg Still, 2017. "Genericity Results in Linear Conic Programming—A Tour d’Horizon," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 77-94, January.
    5. Olga Kostyukova & Tatiana Tchemisova, 2017. "Optimality Conditions for Convex Semi-infinite Programming Problems with Finitely Representable Compact Index Sets," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 76-103, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
    2. Zhijian Lai & Akiko Yoshise, 2022. "Completely positive factorization by a Riemannian smoothing method," Computational Optimization and Applications, Springer, vol. 83(3), pages 933-966, December.
    3. Alexander Engau & Miguel Anjos & Immanuel Bomze, 2013. "Constraint selection in a build-up interior-point cutting-plane method for solving relaxations of the stable-set problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 35-59, August.
    4. João Gouveia & Ting Kei Pong & Mina Saee, 2020. "Inner approximating the completely positive cone via the cone of scaled diagonally dominant matrices," Journal of Global Optimization, Springer, vol. 76(2), pages 383-405, February.
    5. Immanuel M. Bomze & Jianqiang Cheng & Peter J. C. Dickinson & Abdel Lisser & Jia Liu, 2019. "Notoriously hard (mixed-)binary QPs: empirical evidence on new completely positive approaches," Computational Management Science, Springer, vol. 16(4), pages 593-619, October.
    6. Carmo Brás & Gabriele Eichfelder & Joaquim Júdice, 2016. "Copositivity tests based on the linear complementarity problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 461-493, March.
    7. Andrey Afonin & Roland Hildebrand & Peter J. C. Dickinson, 2021. "The extreme rays of the $$6\times 6$$ 6 × 6 copositive cone," Journal of Global Optimization, Springer, vol. 79(1), pages 153-190, January.
    8. Immanuel M. Bomze & Bo Peng, 2023. "Conic formulation of QPCCs applied to truly sparse QPs," Computational Optimization and Applications, Springer, vol. 84(3), pages 703-735, April.
    9. Peter Dickinson & Luuk Gijben, 2014. "On the computational complexity of membership problems for the completely positive cone and its dual," Computational Optimization and Applications, Springer, vol. 57(2), pages 403-415, March.
    10. Abdeljelil Baccari & Mourad Naffouti, 2016. "Copositivity and Sparsity Relations Using Spectral Properties," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 998-1007, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:159:y:2013:i:2:d:10.1007_s10957-013-0344-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.