IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v68y2017i1d10.1007_s10898-016-0462-0.html
   My bibliography  Save this article

A branch and bound algorithm for quantified quadratic programming

Author

Listed:
  • F. Domes

    (University of Vienna)

  • A. Goldsztejn

    (CNRS, IRCCYN (UMR 6597))

Abstract

The aim of this paper is to find the global solutions of uncertain optimization problems having a quadratic objective function and quadratic inequality constraints. The bounded epistemic uncertainties in the constraint coefficients are represented using either universal or existential quantified parameters and interval parameter domains. This approach allows to model non-controlled uncertainties by using universally quantified parameters and controlled uncertainties by using existentially quantified ones. While existentially quantified parameters could be equivalently considered as additional variables, keeping them as parameters allows maintaining the quadratic problem structure, which is essential for the proposed algorithm. The branch and bound algorithm presented in the paper handles both universally and existentially quantified parameters in a homogeneous way, without branching on their domains, and uses some dedicated numerical constraint programming techniques for finding a robust, global solution. Several examples clarify the theoretical parts and the tests demonstrate the usefulness of the proposed method.

Suggested Citation

  • F. Domes & A. Goldsztejn, 2017. "A branch and bound algorithm for quantified quadratic programming," Journal of Global Optimization, Springer, vol. 68(1), pages 1-22, May.
  • Handle: RePEc:spr:jglopt:v:68:y:2017:i:1:d:10.1007_s10898-016-0462-0
    DOI: 10.1007/s10898-016-0462-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-016-0462-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-016-0462-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mian Li & Steven Gabriel & Yohan Shim & Shapour Azarm, 2011. "Interval Uncertainty-Based Robust Optimization for Convex and Non-Convex Quadratic Programs with Applications in Network Infrastructure Planning," Networks and Spatial Economics, Springer, vol. 11(1), pages 159-191, March.
    2. V. Jeyakumar & G. Li, 2013. "Robust solutions of quadratic optimization over single quadratic constraint under interval uncertainty," Journal of Global Optimization, Springer, vol. 55(2), pages 209-226, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marendet, Antoine & Goldsztejn, Alexandre & Chabert, Gilles & Jermann, Christophe, 2020. "A standard branch-and-bound approach for nonlinear semi-infinite problems," European Journal of Operational Research, Elsevier, vol. 282(2), pages 438-452.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christina Büsing & Sigrid Knust & Xuan Thanh Le, 2018. "Trade-off between robustness and cost for a storage loading problem: rule-based scenario generation," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 339-365, December.
    2. Ming Chen & Zhi-Long Chen, 2018. "Robust Dynamic Pricing with Two Substitutable Products," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 249-268, May.
    3. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    4. Pagès-Bernaus, Adela & Pérez-Valdés, Gerardo & Tomasgard, Asgeir, 2015. "A parallelised distributed implementation of a Branch and Fix Coordination algorithm," European Journal of Operational Research, Elsevier, vol. 244(1), pages 77-85.
    5. Joe Naoum-Sawaya & Christoph Buchheim, 2016. "Robust Critical Node Selection by Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 162-174, February.
    6. Y. G. Melese & P. W. Heijnen & R. M. Stikkelman & P. M. Herder, 2017. "An Approach for Integrating Valuable Flexibility During Conceptual Design of Networks," Networks and Spatial Economics, Springer, vol. 17(2), pages 317-341, June.
    7. Zhaomiao Guo & Yueyue Fan, 2017. "A Stochastic Multi-agent Optimization Model for Energy Infrastructure Planning under Uncertainty in An Oligopolistic Market," Networks and Spatial Economics, Springer, vol. 17(2), pages 581-609, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:68:y:2017:i:1:d:10.1007_s10898-016-0462-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.