IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Using the parametric approach to solve the continuous-time linear fractional max–min problems

  • Ching-Feng Wen

    ()

  • Hsien-Chung Wu

    ()

Registered author(s):

    A numerical algorithm based on parametric approach is proposed in this paper to solve a class of continuous-time linear fractional max-min programming problems. We shall transform this original problem into a continuous-time non-fractional programming problem, which unfortunately happens to be a continuous-time nonlinear programming problem. In order to tackle this nonlinear problem, we propose the auxiliary problem that will be formulated as a parametric continuous-time linear programming problem. We also introduce a dual problem of this parametric continuous-time linear programming problem in which the weak duality theorem also holds true. We introduce the discrete approximation method to solve the primal and dual pair of parametric continuous-time linear programming problems by using the recurrence method. Finally, we provide two numerical examples to demonstrate the usefulness of this algorithm. Copyright Springer Science+Business Media, LLC. 2012

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s10898-011-9751-9
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Journal of Global Optimization.

    Volume (Year): 54 (2012)
    Issue (Month): 1 (September)
    Pages: 129-153

    as
    in new window

    Handle: RePEc:spr:jglopt:v:54:y:2012:i:1:p:129-153
    Contact details of provider: Web page: http://www.springer.com/business/operations+research/journal/10898

    Order Information: Web: http://link.springer.de/orders.htm

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Schaible, Siegfried & Ibaraki, Toshidide, 1983. "Fractional programming," European Journal of Operational Research, Elsevier, vol. 12(4), pages 325-338, April.
    2. Schaible, Siegfried, 1981. "Fractional programming: Applications and algorithms," European Journal of Operational Research, Elsevier, vol. 7(2), pages 111-120, June.
    3. Ching-Feng Wen & Hsien-Chung Wu, 2011. "Using the Dinkelbach-type algorithm to solve the continuous-time linear fractional programming problems," Journal of Global Optimization, Springer, vol. 49(2), pages 237-263, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:54:y:2012:i:1:p:129-153. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

    or (Christopher F Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.