Optimizing a linear fractional function over the integer efficient set
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-017-2691-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- M. Ehrgott & H. W. Hamacher & K. Klamroth & S. Nickel & A. Schöbel & M. M. Wiecek, 1997. "Equivalence of Balance Points and Pareto Solutions in Multiple-Objective Programming," Journal of Optimization Theory and Applications, Springer, vol. 92(1), pages 209-212, January.
- Jorge, Jesús M., 2009. "An algorithm for optimizing a linear function over an integer efficient set," European Journal of Operational Research, Elsevier, vol. 195(1), pages 98-103, May.
- Altannar Chinchuluun & Panos Pardalos, 2007. "A survey of recent developments in multiobjective optimization," Annals of Operations Research, Springer, vol. 154(1), pages 29-50, October.
- Manfred Padberg, 2005. "Classical Cuts for Mixed-Integer Programming and Branch-and-Cut," Annals of Operations Research, Springer, vol. 139(1), pages 321-352, October.
- Zerdani, Ouiza & Moulai, Mustapha, 2011. "Optimization over an integer efficient set of a Multiple Objective Linear Fractional Problem," MPRA Paper 35579, University Library of Munich, Germany.
- Banu Lokman & Murat Köksalan & Pekka J. Korhonen & Jyrki Wallenius, 2016. "An interactive algorithm to find the most preferred solution of multi-objective integer programs," Annals of Operations Research, Springer, vol. 245(1), pages 67-95, October.
- Schaible, Siegfried, 1981. "Fractional programming: Applications and algorithms," European Journal of Operational Research, Elsevier, vol. 7(2), pages 111-120, June.
- H. Isermann, 1974. "Technical Note—Proper Efficiency and the Linear Vector Maximum Problem," Operations Research, INFORMS, vol. 22(1), pages 189-191, February.
- Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Benson, Harold P., 2006. "Fractional programming with convex quadratic forms and functions," European Journal of Operational Research, Elsevier, vol. 173(2), pages 351-369, September.
- Seyyed Amir Babak Rasmi & Ali Fattahi & Metin Türkay, 2021. "SASS: slicing with adaptive steps search method for finding the non-dominated points of tri-objective mixed-integer linear programming problems," Annals of Operations Research, Springer, vol. 296(1), pages 841-876, January.
- Harold P. Benson, 2006. "Maximizing the ratio of two convex functions over a convex set," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 309-317, June.
- Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
- Abderrahman Bouhamidi & Mohammed Bellalij & Rentsen Enkhbat & Khalid Jbilou & Marcos Raydan, 2018. "Conditional Gradient Method for Double-Convex Fractional Programming Matrix Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 163-177, January.
- Joaquim Júdice & Valentina Sessa & Masao Fukushima, 2022. "Solution of Fractional Quadratic Programs on the Simplex and Application to the Eigenvalue Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 545-573, June.
- Daniel Jornada & V. Jorge Leon, 2020. "Filtering Algorithms for Biobjective Mixed Binary Linear Optimization Problems with a Multiple-Choice Constraint," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 57-73, January.
- Zerdani, Ouiza & Moulai, Mustapha, 2011. "Optimization over an integer efficient set of a Multiple Objective Linear Fractional Problem," MPRA Paper 35579, University Library of Munich, Germany.
- Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
- Tien Mai & Arunesh Sinha, 2022. "Safe Delivery of Critical Services in Areas with Volatile Security Situation via a Stackelberg Game Approach," Papers 2204.11451, arXiv.org.
- Park, Chong Hyun & Lim, Heejong, 2021. "A parametric approach to integer linear fractional programming: Newton’s and Hybrid-Newton methods for an optimal road maintenance problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1030-1039.
- Yong Xia & Longfei Wang & Xiaohui Wang, 2020. "Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds," Journal of Global Optimization, Springer, vol. 77(2), pages 301-318, June.
- H. Konno & K. Tsuchiya & R. Yamamoto, 2007. "Minimization of the Ratio of Functions Defined as Sums of the Absolute Values," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 399-410, December.
- Henk Kiers, 1995. "Maximization of sums of quotients of quadratic forms and some generalizations," Psychometrika, Springer;The Psychometric Society, vol. 60(2), pages 221-245, June.
- Podinovski, Vladislav V., 2013. "Non-dominance and potential optimality for partial preference relations," European Journal of Operational Research, Elsevier, vol. 229(2), pages 482-486.
- Jiao, Hong-Wei & Liu, San-Yang, 2015. "A practicable branch and bound algorithm for sum of linear ratios problem," European Journal of Operational Research, Elsevier, vol. 243(3), pages 723-730.
- Luca Consolini & Marco Locatelli & Jiulin Wang & Yong Xia, 2020. "Efficient local search procedures for quadratic fractional programming problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 201-232, May.
- Murat Köksalan & Banu Lokman, 2015. "Finding nadir points in multi-objective integer programs," Journal of Global Optimization, Springer, vol. 62(1), pages 55-77, May.
- Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
- Smail Addoune & Karima Boufi & Ahmed Roubi, 2018. "Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 212-239, October.
More about this item
Keywords
Multi-objective programming; Integer programming; Linear fractional programming; Branch and cut;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:267:y:2018:i:1:d:10.1007_s10479-017-2691-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.