IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v49y2011i2p313-342.html
   My bibliography  Save this article

A generic approach to approximate efficiency and applications to vector optimization with set-valued maps

Author

Listed:
  • C. Gutiérrez
  • B. Jiménez
  • V. Novo

Abstract

No abstract is available for this item.

Suggested Citation

  • C. Gutiérrez & B. Jiménez & V. Novo, 2011. "A generic approach to approximate efficiency and applications to vector optimization with set-valued maps," Journal of Global Optimization, Springer, vol. 49(2), pages 313-342, February.
  • Handle: RePEc:spr:jglopt:v:49:y:2011:i:2:p:313-342
    DOI: 10.1007/s10898-010-9546-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-010-9546-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-010-9546-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Norde, Henk & Patrone, Fioravante & Tijs, Stef, 2000. "Characterizing properties of approximate solutions for optimization problems," Mathematical Social Sciences, Elsevier, vol. 40(3), pages 297-311, November.
    2. Altannar Chinchuluun & Panos Pardalos, 2007. "A survey of recent developments in multiobjective optimization," Annals of Operations Research, Springer, vol. 154(1), pages 29-50, October.
    3. C. Gutiérrez & B. Jiménez & V. Novo, 2006. "On Approximate Efficiency in Multiobjective Programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 165-185, August.
    4. G. P. Crespi & A. Guerraggio & M. Rocca, 2007. "Well Posedness in Vector Optimization Problems and Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 213-226, January.
    5. Gutiérrez, C. & Jiménez, B. & Novo, V., 2010. "Optimality conditions via scalarization for a new [epsilon]-efficiency concept in vector optimization problems," European Journal of Operational Research, Elsevier, vol. 201(1), pages 11-22, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. Gutiérrez & R. López & J. Martínez, 2022. "Generalized $${\varepsilon }$$ ε -quasi solutions of set optimization problems," Journal of Global Optimization, Springer, vol. 82(3), pages 559-576, March.
    2. M. Chicco & F. Mignanego & L. Pusillo & S. Tijs, 2011. "Vector Optimization Problems via Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 516-529, September.
    3. C. Gutiérrez & L. Huerga & V. Novo & C. Tammer, 2016. "Duality related to approximate proper solutions of vector optimization problems," Journal of Global Optimization, Springer, vol. 64(1), pages 117-139, January.
    4. C. S. Lalitha & Prashanto Chatterjee, 2015. "Stability and Scalarization in Vector Optimization Using Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 825-843, September.
    5. Gutiérrez, C. & Jiménez, B. & Novo, V., 2012. "Improvement sets and vector optimization," European Journal of Operational Research, Elsevier, vol. 223(2), pages 304-311.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gutiérrez, C. & Jiménez, B. & Novo, V., 2012. "Improvement sets and vector optimization," European Journal of Operational Research, Elsevier, vol. 223(2), pages 304-311.
    2. Gang Xiao & Hong Xiao & Sanyang Liu, 2011. "Scalarization and pointwise well-posedness in vector optimization problems," Journal of Global Optimization, Springer, vol. 49(4), pages 561-574, April.
    3. Podinovski, Vladislav V., 2013. "Non-dominance and potential optimality for partial preference relations," European Journal of Operational Research, Elsevier, vol. 229(2), pages 482-486.
    4. Wassila Drici & Fatma Zohra Ouail & Mustapha Moulaï, 2018. "Optimizing a linear fractional function over the integer efficient set," Annals of Operations Research, Springer, vol. 267(1), pages 135-151, August.
    5. Duque, Daniel & Lozano, Leonardo & Medaglia, Andrés L., 2015. "An exact method for the biobjective shortest path problem for large-scale road networks," European Journal of Operational Research, Elsevier, vol. 242(3), pages 788-797.
    6. Shahryar Rahnamayan & Sedigheh Mahdavi & Kalyanmoy Deb & Azam Asilian Bidgoli, 2020. "Ranking Multi-Metric Scientific Achievements Using a Concept of Pareto Optimality," Mathematics, MDPI, vol. 8(6), pages 1-46, June.
    7. Thai Doan Chuong, 2021. "Optimality and duality in nonsmooth composite vector optimization and applications," Annals of Operations Research, Springer, vol. 296(1), pages 755-777, January.
    8. Lee, Soonhui & Turner, Jonathan & Daskin, Mark S. & Homem-de-Mello, Tito & Smilowitz, Karen, 2012. "Improving fleet utilization for carriers by interval scheduling," European Journal of Operational Research, Elsevier, vol. 218(1), pages 261-269.
    9. Villacorta, Kely D.V. & Oliveira, P. Roberto, 2011. "An interior proximal method in vector optimization," European Journal of Operational Research, Elsevier, vol. 214(3), pages 485-492, November.
    10. Xu Lei & Tang Shiyun & Deng Yanfei & Yuan Yuan, 2020. "Sustainable operation-oriented investment risk evaluation and optimization for renewable energy project: a case study of wind power in China," Annals of Operations Research, Springer, vol. 290(1), pages 223-241, July.
    11. C. S. Lalitha & Prashanto Chatterjee, 2012. "Stability for Properly Quasiconvex Vector Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 492-506, November.
    12. L. Q. Anh & P. Q. Khanh & D. T. M. Van, 2012. "Well-Posedness Under Relaxed Semicontinuity for Bilevel Equilibrium and Optimization Problems with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 42-59, April.
    13. Walter Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    14. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    15. Xu, Pan & Wang, Lizhi & Beavis, William D., 2011. "An optimization approach to gene stacking," European Journal of Operational Research, Elsevier, vol. 214(1), pages 168-178, October.
    16. Tariq Mumtaz & Shahabuddin Muhammad & Muhammad Imran Aslam & Irfan Ahmed, 2022. "Inter-slice resource management for 5G radio access network using markov decision process," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 79(4), pages 541-557, April.
    17. L. P. Hai & L. Huerga & P. Q. Khanh & V. Novo, 2019. "Variants of the Ekeland variational principle for approximate proper solutions of vector equilibrium problems," Journal of Global Optimization, Springer, vol. 74(2), pages 361-382, June.
    18. Maurizio Chicco & Anna Rossi, 2015. "Existence of Optimal Points Via Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 487-501, November.
    19. C. S. Lalitha & Prashanto Chatterjee, 2012. "Stability and Scalarization of Weak Efficient, Efficient and Henig Proper Efficient Sets Using Generalized Quasiconvexities," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 941-961, December.
    20. Amir Elalouf, 2014. "Fast approximation algorithms for routing problems with hop-wise constraints," Annals of Operations Research, Springer, vol. 222(1), pages 279-291, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:49:y:2011:i:2:p:313-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.