IDEAS home Printed from
   My bibliography  Save this article

Improvement sets and vector optimization


  • Gutiérrez, C.
  • Jiménez, B.
  • Novo, V.


In this paper we focus on minimal points in linear spaces and minimal solutions of vector optimization problems, where the preference relation is defined via an improvement set E. To be precise, we extend the notion of E-optimal point due to Chicco et al. in [4] to a general (non-necessarily Pareto) quasi ordered linear space and we study its properties. In particular, we relate the notion of improvement set with other similar concepts of the literature and we characterize it by means of sublevel sets of scalar functions. Moreover, we obtain necessary and sufficient conditions for E-optimal solutions of vector optimization problems through scalarization processes by assuming convexity assumptions and also in the general (nonconvex) case. By applying the obtained results to certain improvement sets we generalize well-known results of the literature referred to efficient, weak efficient and approximate efficient solutions of vector optimization problems.

Suggested Citation

  • Gutiérrez, C. & Jiménez, B. & Novo, V., 2012. "Improvement sets and vector optimization," European Journal of Operational Research, Elsevier, vol. 223(2), pages 304-311.
  • Handle: RePEc:eee:ejores:v:223:y:2012:i:2:p:304-311
    DOI: 10.1016/j.ejor.2012.05.050

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. C. Gutiérrez & B. Jiménez & V. Novo, 2006. "On Approximate Efficiency in Multiobjective Programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 165-185, August.
    2. repec:spr:compst:v:64:y:2006:i:1:p:165-185 is not listed on IDEAS
    3. Gutiérrez, C. & Jiménez, B. & Novo, V., 2010. "Optimality conditions via scalarization for a new [epsilon]-efficiency concept in vector optimization problems," European Journal of Operational Research, Elsevier, vol. 201(1), pages 11-22, February.
    4. C. Gutiérrez & B. Jiménez & V. Novo, 2011. "A generic approach to approximate efficiency and applications to vector optimization with set-valued maps," Journal of Global Optimization, Springer, vol. 49(2), pages 313-342, February.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:2:p:304-311. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.