IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v222y2014i1p279-29110.1007-s10479-013-1308-5.html
   My bibliography  Save this article

Fast approximation algorithms for routing problems with hop-wise constraints

Author

Listed:
  • Amir Elalouf

Abstract

Given a graph G(N,A) with a cost (or benefit) and a delay on each arc, the constrained routing problem (CRP) aims to find a minimum-cost or a maximum-benefit path from a given source to a given destination node, subject to an end-to-end delay constraint. The problem (with a single constraint) is NP-hard, and has been studied by many researchers who found fully polynomial approximation schemes (FPAS) for this problem. The current paper focuses on a generalized CRP version, CRP with hop-wise constraints (CRPH). In the generalized version, instead of one constraint there are up to n−1 special-type constraints, where n is the number of nodes. An FPAS based on interval partitioning is proposed for both the minimization and the maximization versions of CRPH. For G(N,A) with n nodes and m arcs, the complexity of the algorithm is O(mn 2 /ε). Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Amir Elalouf, 2014. "Fast approximation algorithms for routing problems with hop-wise constraints," Annals of Operations Research, Springer, vol. 222(1), pages 279-291, November.
  • Handle: RePEc:spr:annopr:v:222:y:2014:i:1:p:279-291:10.1007/s10479-013-1308-5
    DOI: 10.1007/s10479-013-1308-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1308-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1308-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Altannar Chinchuluun & Panos Pardalos, 2007. "A survey of recent developments in multiobjective optimization," Annals of Operations Research, Springer, vol. 154(1), pages 29-50, October.
    2. Christian Artigues & Dominique Feillet, 2008. "A branch and bound method for the job-shop problem with sequence-dependent setup times," Annals of Operations Research, Springer, vol. 159(1), pages 135-159, March.
    3. Henig, Mordechai I., 1986. "The shortest path problem with two objective functions," European Journal of Operational Research, Elsevier, vol. 25(2), pages 281-291, May.
    4. P. Eveborn & M. Rönnqvist, 2004. "Scheduler – A System for Staff Planning," Annals of Operations Research, Springer, vol. 128(1), pages 21-45, April.
    5. Refael Hassin, 1992. "Approximation Schemes for the Restricted Shortest Path Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 36-42, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Podinovski, Vladislav V., 2013. "Non-dominance and potential optimality for partial preference relations," European Journal of Operational Research, Elsevier, vol. 229(2), pages 482-486.
    2. Li, Jianping & Ge, Yu & He, Shuai & Lichen, Junran, 2014. "Approximation algorithms for constructing some required structures in digraphs," European Journal of Operational Research, Elsevier, vol. 232(2), pages 307-314.
    3. Shisheng Li & T.C.E. Cheng & C.T. Ng & Jinjiang Yuan, 2017. "Two‐agent scheduling on a single sequential and compatible batching machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 628-641, December.
    4. Michael Zabarankin & Stan Uryasev & Robert Murphey, 2006. "Aircraft routing under the risk of detection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(8), pages 728-747, December.
    5. Wassila Drici & Fatma Zohra Ouail & Mustapha Moulaï, 2018. "Optimizing a linear fractional function over the integer efficient set," Annals of Operations Research, Springer, vol. 267(1), pages 135-151, August.
    6. Li Guan & Jianping Li & Weidong Li & Junran Lichen, 2019. "Improved approximation algorithms for the combination problem of parallel machine scheduling and path," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 689-697, October.
    7. Lee, Jisun & Joung, Seulgi & Lee, Kyungsik, 2022. "A fully polynomial time approximation scheme for the probability maximizing shortest path problem," European Journal of Operational Research, Elsevier, vol. 300(1), pages 35-45.
    8. Duque, Daniel & Lozano, Leonardo & Medaglia, Andrés L., 2015. "An exact method for the biobjective shortest path problem for large-scale road networks," European Journal of Operational Research, Elsevier, vol. 242(3), pages 788-797.
    9. Ansis Ozolins, 2020. "Bounded dynamic programming algorithm for the job shop problem with sequence dependent setup times," Operational Research, Springer, vol. 20(3), pages 1701-1728, September.
    10. Shahryar Rahnamayan & Sedigheh Mahdavi & Kalyanmoy Deb & Azam Asilian Bidgoli, 2020. "Ranking Multi-Metric Scientific Achievements Using a Concept of Pareto Optimality," Mathematics, MDPI, vol. 8(6), pages 1-46, June.
    11. Thai Doan Chuong, 2021. "Optimality and duality in nonsmooth composite vector optimization and applications," Annals of Operations Research, Springer, vol. 296(1), pages 755-777, January.
    12. Lee, Soonhui & Turner, Jonathan & Daskin, Mark S. & Homem-de-Mello, Tito & Smilowitz, Karen, 2012. "Improving fleet utilization for carriers by interval scheduling," European Journal of Operational Research, Elsevier, vol. 218(1), pages 261-269.
    13. C. Gutiérrez & B. Jiménez & V. Novo, 2011. "A generic approach to approximate efficiency and applications to vector optimization with set-valued maps," Journal of Global Optimization, Springer, vol. 49(2), pages 313-342, February.
    14. Xu Lei & Tang Shiyun & Deng Yanfei & Yuan Yuan, 2020. "Sustainable operation-oriented investment risk evaluation and optimization for renewable energy project: a case study of wind power in China," Annals of Operations Research, Springer, vol. 290(1), pages 223-241, July.
    15. Esaignani Selvarajah & Rui Zhang, 2014. "Supply chain scheduling to minimize holding costs with outsourcing," Annals of Operations Research, Springer, vol. 217(1), pages 479-490, June.
    16. Randeep Bhatia & Sudipto Guha & Samir Khuller & Yoram J. Sussmann, 1998. "Facility Location with Dynamic Distance Functions," Journal of Combinatorial Optimization, Springer, vol. 2(3), pages 199-217, September.
    17. Walter Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    18. Briskorn, Dirk & Choi, Byung-Cheon & Lee, Kangbok & Leung, Joseph & Pinedo, Michael, 2010. "Complexity of single machine scheduling subject to nonnegative inventory constraints," European Journal of Operational Research, Elsevier, vol. 207(2), pages 605-619, December.
    19. M. Reza Khani & Mohammad R. Salavatipour, 2016. "Improved approximations for buy-at-bulk and shallow-light $$k$$ k -Steiner trees and $$(k,2)$$ ( k , 2 ) -subgraph," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 669-685, February.
    20. Geng, Zhichao & Yuan, Jinjiang, 2023. "Single-machine scheduling of multiple projects with controllable processing times," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1074-1090.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:222:y:2014:i:1:p:279-291:10.1007/s10479-013-1308-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.