IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v7y2024i1d10.1007_s42001-024-00267-6.html
   My bibliography  Save this article

A normative approach to radicalization in social networks

Author

Listed:
  • Vincent Bouttier

    (PSL University
    Lille University)

  • Salomé Leclercq

    (Lille University)

  • Renaud Jardri

    (PSL University
    Lille University)

  • Sophie Denève

    (PSL University)

Abstract

In recent decades, the massification of online social connections has made information globally accessible in a matter of seconds. Unfortunately, this has been accompanied by a dramatic surge in extreme opinions, without a clear solution in sight. Using a model performing probabilistic inference in large-scale loopy graphs through exchange of messages between nodes, we show how circularity in the social graph directly leads to radicalization and the polarization of opinions. We demonstrate that these detrimental effects could be avoided if the correlations between incoming messages could be decreased. This approach is based on an extension of Belief Propagation (BP) named Circular Belief Propagation (CBP) that can be trained to drastically improve inference within a cyclic graph. CBP was benchmarked using data from Facebook© and Twitter©. This approach could inspire new methods for preventing the viral spreading and amplification of misinformation online, improving the capacity of social networks to share knowledge globally without resorting to censorship.

Suggested Citation

  • Vincent Bouttier & Salomé Leclercq & Renaud Jardri & Sophie Denève, 2024. "A normative approach to radicalization in social networks," Journal of Computational Social Science, Springer, vol. 7(1), pages 1071-1093, April.
  • Handle: RePEc:spr:jcsosc:v:7:y:2024:i:1:d:10.1007_s42001-024-00267-6
    DOI: 10.1007/s42001-024-00267-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-024-00267-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-024-00267-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kazutoshi Sasahara & Wen Chen & Hao Peng & Giovanni Luca Ciampaglia & Alessandro Flammini & Filippo Menczer, 2021. "Social influence and unfollowing accelerate the emergence of echo chambers," Journal of Computational Social Science, Springer, vol. 4(1), pages 381-402, May.
    2. Jeff Tollefson, 2021. "Tracking QAnon: how Trump turned conspiracy-theory research upside down," Nature, Nature, vol. 590(7845), pages 192-193, February.
    3. A. Barrat & M. Weigt, 2000. "On the properties of small-world network models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 13(3), pages 547-560, February.
    4. Praveen Suthaharan & Erin J. Reed & Pantelis Leptourgos & Joshua G. Kenney & Stefan Uddenberg & Christoph D. Mathys & Leib Litman & Jonathan Robinson & Aaron J. Moss & Jane R. Taylor & Stephanie M. Gr, 2021. "Paranoia and belief updating during the COVID-19 crisis," Nature Human Behaviour, Nature, vol. 5(9), pages 1190-1202, September.
    5. Alessandro Vespignani, 2018. "Twenty years of network science," Nature, Nature, vol. 558(7711), pages 528-529, June.
    6. Pantelis Leptourgos & Vincent Bouttier & Renaud Jardri & Sophie Denève, 2020. "A functional theory of bistable perception based on dynamical circular inference," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-23, December.
    7. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Boyer & Denis Boyer & Gilles Laferté, 2007. "La connexion des réseaux comme facteur de changement institutionnel : l'exemple des vins de Bourgogne," PSE Working Papers halshs-00587708, HAL.
    2. Ni, Xuelian & Xiong, Fei & Pan, Shirui & Chen, Hongshu & Wu, Jia & Wang, Liang, 2023. "How heterogeneous social influence acts on human decision-making in online social networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Robert Boyer & Denis Boyer & Gilles Laferté, 2007. "La connexion des réseaux comme facteur de changement institutionnel : l'exemple des vins de Bourgogne," Working Papers halshs-00587708, HAL.
    4. Pérez-Martínez, H. & Bauzá Mingueza, F. & Soriano-Paños, D. & Gómez-Gardeñes, J. & Floría, L.M., 2023. "Polarized opinion states in static networks driven by limited information horizons," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    5. Sven Banisch & Eckehard Olbrich, 2021. "An Argument Communication Model of Polarization and Ideological Alignment," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 24(1), pages 1-1.
    6. Konstantinos Antoniadis & Kostas Zafiropoulos & Vasiliki Vrana, 2016. "A Method for Assessing the Performance of e-Government Twitter Accounts," Future Internet, MDPI, vol. 8(2), pages 1-18, April.
    7. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    8. Yue Chen & Xiaojian Niu & Yan Zhang, 2019. "Exploring Contrarian Degree in the Trading Behavior of China's Stock Market," Complexity, Hindawi, vol. 2019, pages 1-12, April.
    9. Gani Aldashev & Timoteo Carletti & Simone Righi, 2010. "Adaptive Expectations, Confirmatory Bias, and Informational Efficiency," Papers 1009.5075, arXiv.org.
    10. Guillaume Deffuant & Ilaria Bertazzi & Sylvie Huet, 2018. "The Dark Side Of Gossips: Hints From A Simple Opinion Dynamics Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-20, September.
    11. G Jordan Maclay & Moody Ahmad, 2021. "An agent based force vector model of social influence that predicts strong polarization in a connected world," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-42, November.
    12. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    13. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    14. Shen, Meng & Li, Xiang & Lu, Yujie & Cui, Qingbin & Wei, Yi-Ming, 2021. "Personality-based normative feedback intervention for energy conservation," Energy Economics, Elsevier, vol. 104(C).
    15. Katarzyna Ostasiewicz & Michal H. Tyc & Piotr Goliczewski & Piotr Magnuszewski & Andrzej Radosz & Jan Sendzimir, 2006. "Integrating economic and psychological insights in binary choice models with social interactions," Papers physics/0609170, arXiv.org.
    16. Lawford, Steve & Mehmeti, Yll, 2020. "Cliques and a new measure of clustering: With application to U.S. domestic airlines," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    17. Karataieva, Tatiana & Koshmanenko, Volodymyr & Krawczyk, Małgorzata J. & Kułakowski, Krzysztof, 2019. "Mean field model of a game for power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 535-547.
    18. Deffuant, Guillaume & Roubin, Thibaut, 2023. "Emergence of group hierarchy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    19. Tsonis, Anastasios A. & Swanson, Kyle L. & Wang, Geli, 2008. "Estimating the clustering coefficient in scale-free networks on lattices with local spatial correlation structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5287-5294.
    20. Pollner, Péter & Palla, Gergely & Vicsek, Tamás, 2010. "Clustering of tag-induced subgraphs in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5887-5894.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:7:y:2024:i:1:d:10.1007_s42001-024-00267-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.