IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v6y2023i2d10.1007_s42001-023-00207-w.html
   My bibliography  Save this article

Grounding force-directed network layouts with latent space models

Author

Listed:
  • Felix Gaisbauer

    (Weizenbaum Institute for the Networked Society
    Max Planck Institute for Mathematics in the Sciences)

  • Armin Pournaki

    (Max Planck Institute for Mathematics in the Sciences
    Laboratoire Lattice, CNRS & ENS-PSL & Université Sorbonne nouvelle
    Sciences Po, médialab)

  • Sven Banisch

    (Karlsruhe Institute for Technology)

  • Eckehard Olbrich

    (Max Planck Institute for Mathematics in the Sciences)

Abstract

Force-directed layout algorithms are ubiquitously used tools for network visualization. However, existing algorithms either lack clear interpretation, or they are based on techniques of dimensionality reduction which simply seek to preserve network-immanent topological features, such as geodesic distance. We propose an alternative layout algorithm. The forces of the algorithm are derived from latent space models, which assume that the probability of nodes forming a tie depends on their distance in an unobserved latent space. As opposed to previous approaches, this grounds the algorithm in a plausible interaction mechanism. The forces infer positions which maximise the likelihood of the given network under the latent space model. We implement these forces for unweighted, multi-tie, and weighted networks. We then showcase the algorithm by applying it to Facebook friendship, and Twitter follower and retweet networks; we also explore the possibility of visualizing data traditionally not seen as network data, such as survey data. Comparison to existing layout algorithms reveals that node groups are placed in similar configurations, while said algorithms show a stronger intra-cluster separation of nodes, as well as a tendency to separate clusters more strongly in multi-tie networks, such as Twitter retweet networks.

Suggested Citation

  • Felix Gaisbauer & Armin Pournaki & Sven Banisch & Eckehard Olbrich, 2023. "Grounding force-directed network layouts with latent space models," Journal of Computational Social Science, Springer, vol. 6(2), pages 707-739, October.
  • Handle: RePEc:spr:jcsosc:v:6:y:2023:i:2:d:10.1007_s42001-023-00207-w
    DOI: 10.1007/s42001-023-00207-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-023-00207-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-023-00207-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Imai, Kosuke & Lo, James & Olmsted, Jonathan, 2016. "Fast Estimation of Ideal Points with Massive Data," American Political Science Review, Cambridge University Press, vol. 110(4), pages 631-656, November.
    2. Livia van Vliet & Petter Törnberg & Justus Uitermark, 2020. "The Twitter parliamentarian database: Analyzing Twitter politics across 26 countries," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-24, September.
    3. Traud, Amanda L. & Mucha, Peter J. & Porter, Mason A., 2012. "Social structure of Facebook networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4165-4180.
    4. Csaba Both & Nima Dehmamy & Rose Yu & Albert-László Barabási, 2023. "Accelerating network layouts using graph neural networks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    6. Daniel K. Sewell & Yuguo Chen, 2015. "Latent Space Models for Dynamic Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1646-1657, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    2. Adrian E. Raftery, 2017. "Comment: Extending the Latent Position Model for Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1531-1534, October.
    3. Selena Wang & Subhadeep Paul & Paul Boeck, 2023. "Joint Latent Space Model for Social Networks with Multivariate Attributes," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1197-1227, December.
    4. Jina Park & Ick Hoon Jin & Minjeong Jeon, 2023. "How Social Networks Influence Human Behavior: An Integrated Latent Space Approach for Differential Social Influence," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1529-1555, December.
    5. Sosa, Juan & Betancourt, Brenda, 2022. "A latent space model for multilayer network data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    6. Babkin, Sergii & Stewart, Jonathan R. & Long, Xiaochen & Schweinberger, Michael, 2020. "Large-scale estimation of random graph models with local dependence," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    7. Haiyan Liu & Ick Hoon Jin & Zhiyong Zhang & Ying Yuan, 2021. "Social Network Mediation Analysis: A Latent Space Approach," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 272-298, March.
    8. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    9. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    10. Jiashun Jin & Zheng Tracy Ke & Shengming Luo, 2022. "Improvements on SCORE, Especially for Weak Signals," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 127-162, June.
    11. Jin, Jiashun & Ke, Zheng Tracy & Luo, Shengming, 2024. "Mixed membership estimation for social networks," Journal of Econometrics, Elsevier, vol. 239(2).
    12. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    13. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    14. Saxena, Rakhi & Kaur, Sharanjit & Bhatnagar, Vasudha, 2019. "Identifying similar networks using structural hierarchy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    15. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    16. Owen G. Ward & Jing Wu & Tian Zheng & Anna L. Smith & James P. Curley, 2022. "Network Hawkes process models for exploring latent hierarchy in social animal interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1402-1426, November.
    17. Rawya Zreik & Pierre Latouche & Charles Bouveyron, 2017. "The dynamic random subgraph model for the clustering of evolving networks," Computational Statistics, Springer, vol. 32(2), pages 501-533, June.
    18. Ick Hoon Jin & Minjeong Jeon, 2019. "A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 236-260, March.
    19. Ma, Shujie & Su, Liangjun & Zhang, Yichong, 2020. "Detecting Latent Communities in Network Formation Models," Economics and Statistics Working Papers 12-2020, Singapore Management University, School of Economics.
    20. Luca Braghieri & Ro'ee Levy & Alexey Makarin, 2022. "Social Media and Mental Health," American Economic Review, American Economic Association, vol. 112(11), pages 3660-3693, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:6:y:2023:i:2:d:10.1007_s42001-023-00207-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.