IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v47y2024i3d10.1007_s10878-024-01116-y.html
   My bibliography  Save this article

Selecting intervals to optimize the design of observational studies subject to fine balance constraints

Author

Listed:
  • Asaf Levin

    (The Technion)

Abstract

Motivated by designing observational studies using matching methods subject to fine balance constraints, we introduce a new optimization problem. This problem consists of two phases. In the first phase, the goal is to cluster the values of a continuous covariate into a limited number of intervals. In the second phase, we find the optimal matching subject to fine balance constraints with respect to the new covariate we obtained in the first phase. We show that the resulting optimization problem is NP-hard. However, it admits an FPT algorithm with respect to a natural parameter. This FPT algorithm also translates into a polynomial time algorithm for the most natural special cases of the problem.

Suggested Citation

  • Asaf Levin, 2024. "Selecting intervals to optimize the design of observational studies subject to fine balance constraints," Journal of Combinatorial Optimization, Springer, vol. 47(3), pages 1-16, April.
  • Handle: RePEc:spr:jcomop:v:47:y:2024:i:3:d:10.1007_s10878-024-01116-y
    DOI: 10.1007/s10878-024-01116-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-024-01116-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-024-01116-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosenbaum, Paul R. & Ross, Richard N. & Silber, Jeffrey H., 2007. "Minimum Distance Matched Sampling With Fine Balance in an Observational Study of Treatment for Ovarian Cancer," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 75-83, March.
    2. Jason J. Sauppe & Sheldon H. Jacobson & Edward C. Sewell, 2014. "Complexity and Approximation Results for the Balance Optimization Subset Selection Model for Causal Inference in Observational Studies," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 547-566, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason J. Sauppe & Sheldon H. Jacobson, 2017. "The role of covariate balance in observational studies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 323-344, June.
    2. Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
    3. Hochbaum, Dorit S. & Rao, Xu & Sauppe, Jason, 2022. "Network flow methods for the minimum covariate imbalance problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 827-836.
    4. Martin Cousineau & Vedat Verter & Susan A. Murphy & Joelle Pineau, 2022. "Estimating causal effects with optimization-based methods: A review and empirical comparison," Papers 2203.00097, arXiv.org.
    5. Florian Gunsilius & Yuliang Xu, 2021. "Matching for causal effects via multimarginal unbalanced optimal transport," Papers 2112.04398, arXiv.org, revised Jul 2022.
    6. Gensler, Sonja & Leeflang, Peter & Skiera, Bernd, 2012. "Impact of online channel use on customer revenues and costs to serve: Considering product portfolios and self-selection," International Journal of Research in Marketing, Elsevier, vol. 29(2), pages 192-201.
    7. Pierluigi Montalbano & Silvia Nenci & Laura Dell'Agostino, 2022. "A non-parametric assessment of the effects of the Euro on GVC trade," International Economics, CEPII research center, issue 172, pages 56-76.
    8. Hee Youn Kwon & Jason J. Sauppe & Sheldon H. Jacobson, 2019. "Treatment Effect Decomposition and Bootstrap Hypothesis Testing in Observational Studies," Annals of Data Science, Springer, vol. 6(3), pages 491-511, September.
    9. Ruoqi Yu, 2023. "How well can fine balance work for covariate balancing," Biometrics, The International Biometric Society, vol. 79(3), pages 2346-2356, September.
    10. Md Saiful Islam & Md Sarowar Morshed & Md. Noor-E-Alam, 2022. "A Computational Framework for Solving Nonlinear Binary Optimization Problems in Robust Causal Inference," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3023-3041, November.
    11. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    12. Gary King & Christopher Lucas & Richard A. Nielsen, 2017. "The Balance‐Sample Size Frontier in Matching Methods for Causal Inference," American Journal of Political Science, John Wiley & Sons, vol. 61(2), pages 473-489, April.
    13. Glazer Amanda K. & Pimentel Samuel D., 2023. "Robust inference for matching under rolling enrollment," Journal of Causal Inference, De Gruyter, vol. 11(1), pages 1-19, January.
    14. Tian Heong Chan & Francis de Véricourt & Omar Besbes, 2019. "Contracting in Medical Equipment Maintenance Services: An Empirical Investigation," Management Science, INFORMS, vol. 65(3), pages 1136-1150, March.
    15. Arpino, Bruno & Mealli, Fabrizia, 2011. "The specification of the propensity score in multilevel observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1770-1780, April.
    16. Paul R. Rosenbaum, 2011. "A New u-Statistic with Superior Design Sensitivity in Matched Observational Studies," Biometrics, The International Biometric Society, vol. 67(3), pages 1017-1027, September.
    17. Dan Yang & Dylan S. Small & Jeffrey H. Silber & Paul R. Rosenbaum, 2012. "Optimal Matching with Minimal Deviation from Fine Balance in a Study of Obesity and Surgical Outcomes," Biometrics, The International Biometric Society, vol. 68(2), pages 628-636, June.
    18. Luke Keele & Steve Harris & Samuel D. Pimentel & Richard Grieve, 2020. "Stronger instruments and refined covariate balance in an observational study of the effectiveness of prompt admission to intensive care units," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1501-1521, October.
    19. Nicholas Longford & Ioana C. Salagean, 2013. "A study of the labour market trajectories in the Grand Duchy of Luxembourg," Economics Working Papers 1396, Department of Economics and Business, Universitat Pompeu Fabra.
    20. Alexander G. Nikolaev & Sheldon H. Jacobson & Wendy K. Tam Cho & Jason J. Sauppe & Edward C. Sewell, 2013. "Balance Optimization Subset Selection (BOSS): An Alternative Approach for Causal Inference with Observational Data," Operations Research, INFORMS, vol. 61(2), pages 398-412, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:47:y:2024:i:3:d:10.1007_s10878-024-01116-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.