IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v38y2019i3d10.1007_s10878-019-00429-7.html
   My bibliography  Save this article

Parallel-machine scheduling with job-dependent cumulative deterioration effect and rejection

Author

Listed:
  • Shi-Sheng Li

    (Zhongyuan University of Technology)

  • Ren-Xia Chen

    (Zhongyuan University of Technology)

  • Qi Feng

    (Zhongyuan University of Technology)

  • Cheng-Wen Jiao

    (Zhongyuan University of Technology)

Abstract

We study a parallel-machine scheduling problem in which job rejection is allowed and the actual processing time of a job depends on the sum of certain parameters associated with the jobs scheduled earlier. The goal is to minimize the sum of the makespan of the accepted jobs and total rejection penalty of the rejected jobs. When the number of machines is fixed, we develop an exact dynamic programming algorithm and a fully polynomial-time approximation scheme for solving it. When the number of machines is restricted to one, we reformulate the problem as a variant of a half-product problem, which allows us to design a fully polynomial-time approximation scheme with the best possible running time.

Suggested Citation

  • Shi-Sheng Li & Ren-Xia Chen & Qi Feng & Cheng-Wen Jiao, 2019. "Parallel-machine scheduling with job-dependent cumulative deterioration effect and rejection," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 957-971, October.
  • Handle: RePEc:spr:jcomop:v:38:y:2019:i:3:d:10.1007_s10878-019-00429-7
    DOI: 10.1007/s10878-019-00429-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-019-00429-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-019-00429-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sid Browne & Uri Yechiali, 1990. "Scheduling Deteriorating Jobs on a Single Processor," Operations Research, INFORMS, vol. 38(3), pages 495-498, June.
    2. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
    3. Vitaly A. Strusevich & Kabir Rustogi, 2017. "Scheduling with Time-Changing Effects and Rate-Modifying Activities," International Series in Operations Research and Management Science, Springer, number 978-3-319-39574-6, September.
    4. Mikhail Y. Kovalyov & Wieslaw Kubiak, 1999. "A Fully Polynomial Approximation Scheme for the Weighted Earliness–Tardiness Problem," Operations Research, INFORMS, vol. 47(5), pages 757-761, October.
    5. Cheng, T. C. E. & Ding, Q. & Lin, B. M. T., 2004. "A concise survey of scheduling with time-dependent processing times," European Journal of Operational Research, Elsevier, vol. 152(1), pages 1-13, January.
    6. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    7. Vitaly A. Strusevich & Kabir Rustogi, 2017. "Scheduling with Rate-Modifying Activities," International Series in Operations Research & Management Science, in: Scheduling with Time-Changing Effects and Rate-Modifying Activities, chapter 0, pages 317-331, Springer.
    8. Kabir Rustogi & Vitaly A. Strusevich, 2017. "Single machine scheduling with a generalized job-dependent cumulative effect," Journal of Scheduling, Springer, vol. 20(6), pages 583-592, December.
    9. T. Badics & E. Boros, 1998. "Minimization of Half-Products," Mathematics of Operations Research, INFORMS, vol. 23(3), pages 649-660, August.
    10. Cheng, Yushao & Sun, Shijie, 2009. "Scheduling linear deteriorating jobs with rejection on a single machine," European Journal of Operational Research, Elsevier, vol. 194(1), pages 18-27, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Pan & Xinyu Sun & Ji-Bo Wang & Li-Han Zhang & Dan-Yang Lv, 2023. "Due date assignment single-machine scheduling with delivery times, position-dependent weights and deteriorating jobs," Journal of Combinatorial Optimization, Springer, vol. 45(4), pages 1-16, May.
    2. Baruch Mor & Dana Shapira, 2022. "Single machine scheduling with non-availability interval and optional job rejection," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 480-497, August.
    3. Shaojun Lu & Jun Pei & Xinbao Liu & Panos M. Pardalos, 2020. "Robust parallel-batching scheduling with fuzzy deteriorating processing time and variable delivery time in smart manufacturing," Fuzzy Optimization and Decision Making, Springer, vol. 19(3), pages 333-357, September.
    4. Ma, Ran & Guo, Sainan, 2021. "Applying “Peeling Onion” approach for competitive analysis in online scheduling with rejection," European Journal of Operational Research, Elsevier, vol. 290(1), pages 57-67.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    2. Delorme, Maxence & Iori, Manuel & Mendes, Nilson F.M., 2021. "Solution methods for scheduling problems with sequence-dependent deterioration and maintenance events," European Journal of Operational Research, Elsevier, vol. 295(3), pages 823-837.
    3. Ming Liu & Feifeng Zheng & Chengbin Chu & Jiantong Zhang, 2012. "An FPTAS for uniform machine scheduling to minimize makespan with linear deterioration," Journal of Combinatorial Optimization, Springer, vol. 23(4), pages 483-492, May.
    4. Min Ji & Chou-Jung Hsu & Dar-Li Yang, 2013. "Single-machine scheduling with deteriorating jobs and aging effects under an optional maintenance activity consideration," Journal of Combinatorial Optimization, Springer, vol. 26(3), pages 437-447, October.
    5. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    6. Zhongyi Jiang & Fangfang Chen & Xiandong Zhang, 2022. "Single-machine scheduling problems with general truncated sum-of-actual-processing-time-based learning effect," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 116-139, January.
    7. Stanisław Gawiejnowicz & Wiesław Kurc, 2020. "New results for an open time-dependent scheduling problem," Journal of Scheduling, Springer, vol. 23(6), pages 733-744, December.
    8. Wenhua Li & Libo Wang & Xing Chai & Hang Yuan, 2020. "Online Batch Scheduling of Simple Linear Deteriorating Jobs with Incompatible Families," Mathematics, MDPI, vol. 8(2), pages 1-12, February.
    9. Xiao, Yiyong & Yuan, Yingying & Zhang, Ren-Qian & Konak, Abdullah, 2015. "Non-permutation flow shop scheduling with order acceptance and weighted tardiness," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 312-333.
    10. Helmut A. Sedding, 2020. "Scheduling jobs with a V-shaped time-dependent processing time," Journal of Scheduling, Springer, vol. 23(6), pages 751-768, December.
    11. Kellerer, Hans & Rustogi, Kabir & Strusevich, Vitaly A., 2020. "A fast FPTAS for single machine scheduling problem of minimizing total weighted earliness and tardiness about a large common due date," Omega, Elsevier, vol. 90(C).
    12. Baruch Mor & Dana Shapira, 2022. "Single machine scheduling with non-availability interval and optional job rejection," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 480-497, August.
    13. Chuanli Zhao & Hengyong Tang, 2016. "Scheduling Deteriorating Jobs with Availability Constraints to Minimize the Makespan," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(06), pages 1-10, December.
    14. C-C He & C-C Wu & W-C Lee, 2009. "Branch-and-bound and weight-combination search algorithms for the total completion time problem with step-deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1759-1766, December.
    15. Jun Pei & Xinbao Liu & Panos M. Pardalos & Wenjuan Fan & Shanlin Yang, 2017. "Scheduling deteriorating jobs on a single serial-batching machine with multiple job types and sequence-dependent setup times," Annals of Operations Research, Springer, vol. 249(1), pages 175-195, February.
    16. Wang, Ling & Sun, Lin-Yan & Sun, Lin-Hui & Wang, Ji-Bo, 2010. "On three-machine flow shop scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 125(1), pages 185-189, May.
    17. Wu, Chin-Chia & Lee, Wen-Chiung, 2006. "Two-machine flowshop scheduling to minimize mean flow time under linear deterioration," International Journal of Production Economics, Elsevier, vol. 103(2), pages 572-584, October.
    18. T C E Cheng & L Kang & C T Ng, 2004. "Due-date assignment and single machine scheduling with deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 198-203, February.
    19. Li, Shisheng & Ng, C.T. & Cheng, T.C.E. & Yuan, Jinjiang, 2011. "Parallel-batch scheduling of deteriorating jobs with release dates to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 210(3), pages 482-488, May.
    20. Lodree Jr., Emmett J. & Geiger, Christopher D., 2010. "A note on the optimal sequence position for a rate-modifying activity under simple linear deterioration," European Journal of Operational Research, Elsevier, vol. 201(2), pages 644-648, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:38:y:2019:i:3:d:10.1007_s10878-019-00429-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.