IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v32y2016i3d10.1007_s10878-015-9924-4.html
   My bibliography  Save this article

Efficient approximation schemes for the maximum lateness minimization on a single machine with a fixed operator or machine non-availability interval

Author

Listed:
  • Imed Kacem

    (Université de Lorraine)

  • Hans Kellerer

    (ISOR, University of Graz)

  • Maryam Seifaddini

    (Université de Lorraine)

Abstract

In this paper we deal with the single machine scheduling problem with one non-availability interval to minimize the maximum lateness where jobs have positive tails. Two cases are considered. In the first one, the non-availability interval is due to the machine maintenance. In the second case, the non-availability interval is related to the operator who is organizing the execution of jobs on the machine. The contribution of this paper consists in an improved fully polynomial time approximation scheme (FPTAS) for the maintenance non-availability interval case and the elaboration of the first FPTAS for the operator non-availability interval case. The two FPTASs are strongly polynomial.

Suggested Citation

  • Imed Kacem & Hans Kellerer & Maryam Seifaddini, 2016. "Efficient approximation schemes for the maximum lateness minimization on a single machine with a fixed operator or machine non-availability interval," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 970-981, October.
  • Handle: RePEc:spr:jcomop:v:32:y:2016:i:3:d:10.1007_s10878-015-9924-4
    DOI: 10.1007/s10878-015-9924-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-015-9924-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-015-9924-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlier, Jacques, 1982. "The one-machine sequencing problem," European Journal of Operational Research, Elsevier, vol. 11(1), pages 42-47, September.
    2. Yuan, Jinjiang & Qi, Xianglai & Lu, Lingfa & Li, Wenhua, 2008. "Single machine unbounded parallel-batch scheduling with forbidden intervals," European Journal of Operational Research, Elsevier, vol. 186(3), pages 1212-1217, May.
    3. Schmidt, Gunter, 2000. "Scheduling with limited machine availability," European Journal of Operational Research, Elsevier, vol. 121(1), pages 1-15, February.
    4. Jinjiang Yuan & Lei Shi & Jinwen Ou, 2008. "Single Machine Scheduling With Forbidden Intervals And Job Delivery Times," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 25(03), pages 317-325.
    5. X Qi & T Chen & F Tu, 1999. "Scheduling the maintenance on a single machine," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(10), pages 1071-1078, October.
    6. Imed Kacem, 2009. "Approximation algorithms for the makespan minimization with positive tails on a single machine with a fixed non-availability interval," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 117-133, February.
    7. M. A. Kubzin & V. A. Strusevich, 2006. "Planning Machine Maintenance in Two-Machine Shop Scheduling," Operations Research, INFORMS, vol. 54(4), pages 789-800, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi-Sheng Li & Ren-Xia Chen, 2022. "Minimizing total weighted late work on a single-machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1330-1355, September.
    2. Ren-Xia Chen & Shi-Sheng Li, 2020. "Minimizing maximum delivery completion time for order scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1044-1064, November.
    3. Yunqiang Yin & Jianyou Xu & T. C. E. Cheng & Chin‐Chia Wu & Du‐Juan Wang, 2016. "Approximation schemes for single‐machine scheduling with a fixed maintenance activity to minimize the total amount of late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 172-183, March.
    4. Guanghua Wu & Hongli Zhu, 2024. "Single-Machine Rescheduling with Rejection and an Operator No-Availability Period," Mathematics, MDPI, vol. 12(23), pages 1-11, November.
    5. Imed Kacem & Hans Kellerer, 2024. "Minimizing the maximum lateness for scheduling with release times and job rejection," Journal of Combinatorial Optimization, Springer, vol. 48(3), pages 1-22, October.
    6. Lili Zuo & Zhenxia Sun & Lingfa Lu & Liqi Zhang, 2019. "Single-Machine Scheduling with Rejection and an Operator Non-Availability Interval," Mathematics, MDPI, vol. 7(8), pages 1-8, July.
    7. Ji Tian & Yan Zhou & Ruyan Fu, 2020. "An improved semi-online algorithm for scheduling on a single machine with unexpected breakdown," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 170-180, July.
    8. Lin, Ran & Wang, Jun-Qiang & Liu, Zhixin & Xu, Jun, 2023. "Best possible algorithms for online scheduling on identical batch machines with periodic pulse interruptions," European Journal of Operational Research, Elsevier, vol. 309(1), pages 53-64.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imed Kacem, 2009. "Approximation algorithms for the makespan minimization with positive tails on a single machine with a fixed non-availability interval," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 117-133, February.
    2. Shi-Sheng Li & Ren-Xia Chen, 2022. "Minimizing total weighted late work on a single-machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1330-1355, September.
    3. Wolter, Anja & Helber, Stefan, 2013. "Simultaneous Production and Maintenance Planning for a Single Capacitated Resource facing both a Dynamic Demand and Intensive Wear and Tear," Hannover Economic Papers (HEP) dp-522, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    4. Kacem, Imed & Chu, Chengbin, 2008. "Efficient branch-and-bound algorithm for minimizing the weighted sum of completion times on a single machine with one availability constraint," International Journal of Production Economics, Elsevier, vol. 112(1), pages 138-150, March.
    5. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    6. Wenchang Luo & Yao Xu & Weitian Tong & Guohui Lin, 2019. "Single-machine scheduling with job-dependent machine deterioration," Journal of Scheduling, Springer, vol. 22(6), pages 691-707, December.
    7. Hfaiedh, Walid & Sadfi, Chérif & Kacem, Imed & Hadj-Alouane, Atidel, 2015. "A branch-and-bound method for the single-machine scheduling problem under a non-availability constraint for maximum delivery time minimization," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 496-502.
    8. Ji Tian & Yan Zhou & Ruyan Fu, 2020. "An improved semi-online algorithm for scheduling on a single machine with unexpected breakdown," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 170-180, July.
    9. Lili Zuo & Zhenxia Sun & Lingfa Lu & Liqi Zhang, 2019. "Single-Machine Scheduling with Rejection and an Operator Non-Availability Interval," Mathematics, MDPI, vol. 7(8), pages 1-8, July.
    10. Ali Salmasnia & Danial Mirabadi-Dastjerd, 2017. "Joint production and preventive maintenance scheduling for a single degraded machine by considering machine failures," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 544-578, October.
    11. Hoyningen-Huene, Wiebke von, 2015. "Heuristics for an Integrated Maintenance and Production Scheduling Problem on Parallel Machines with Stochastic Failures and Non-Resumable Jobs," EconStor Preprints 112746, ZBW - Leibniz Information Centre for Economics.
    12. von Hoyningen-Huene, W. & Kiesmüller, G.P., 2015. "Evaluation of the expected makespan of a set of non-resumable jobs on parallel machines with stochastic failures," European Journal of Operational Research, Elsevier, vol. 240(2), pages 439-446.
    13. Yang, Suh-Jenq & Yang, Dar-Li, 2010. "Minimizing the makespan on single-machine scheduling with aging effect and variable maintenance activities," Omega, Elsevier, vol. 38(6), pages 528-533, December.
    14. Shijin Wang & Ming Liu, 2016. "Two-machine flow shop scheduling integrated with preventive maintenance planning," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(3), pages 672-690, February.
    15. J S Chen, 2006. "Single-machine scheduling with flexible and periodic maintenance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 703-710, June.
    16. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    17. J-J Wang & J-B Wang & F Liu, 2011. "Parallel machines scheduling with a deteriorating maintenance activity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1898-1902, October.
    18. Jing Fan & Xiwen Lu, 2015. "Supply chain scheduling problem in the hospital with periodic working time on a single machine," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 892-905, November.
    19. Rustogi, Kabir & Strusevich, Vitaly A., 2012. "Single machine scheduling with general positional deterioration and rate-modifying maintenance," Omega, Elsevier, vol. 40(6), pages 791-804.
    20. Chen, Jen-Shiang, 2008. "Scheduling of nonresumable jobs and flexible maintenance activities on a single machine to minimize makespan," European Journal of Operational Research, Elsevier, vol. 190(1), pages 90-102, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:32:y:2016:i:3:d:10.1007_s10878-015-9924-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.