IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v7y2016i4d10.1007_s13198-016-0470-y.html
   My bibliography  Save this article

Testing effort based modeling to determine optimal release and patching time of software

Author

Listed:
  • Anshul Tickoo

    (Amity University)

  • P. K. Kapur

    (Amity University)

  • A. K. Shrivastava

    (Asia Pacific Institute of Management)

  • Sunil K. Khatri

    (Amity University)

Abstract

In this era of information technology, our dependence on software systems is increasing day by day. This dependence on software systems has increased the pressure on software firms to fulfill the customer’s demand for highly reliable software. On the other hand, for ensuring high reliability of the software prolonged testing is required, which consumes large amount of resources hence not feasible in the current stiff market competition. Further delay in release can cost a lot in terms of market opportunity. Therefore, to sustain in the market, firms are releasing the software early and removing the remaining number of bugs by updating with patches. A patch is a piece of software designed to update a computer program or its supporting data, to fix or improve it. With such patches usually called bug fixes, firms improve the usability or performance of the software. Providing patches needs extra amount of effort and manpower which costs high. Also early patch release may result in improper removal of bugs and late release can increase the risk of more of failures in the operational phase To overcome the above issues we have proposed a testing effort based cost model to determine the optimal release and patch time of a software so that the total cost is minimized. In the proposed cost model developing team continues removing the faults even after software release. Further, we have taken different distribution function in pre and post release phase (before and after patching) to develop the proposed cost model. Numerical illustration is provided at the end of the paper for validation of the proposed cost model.

Suggested Citation

  • Anshul Tickoo & P. K. Kapur & A. K. Shrivastava & Sunil K. Khatri, 2016. "Testing effort based modeling to determine optimal release and patching time of software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 427-434, December.
  • Handle: RePEc:spr:ijsaem:v:7:y:2016:i:4:d:10.1007_s13198-016-0470-y
    DOI: 10.1007/s13198-016-0470-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-016-0470-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-016-0470-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ashish Arora & Jonathan P. Caulkins & Rahul Telang, 2006. "Research Note--Sell First, Fix Later: Impact of Patching on Software Quality," Management Science, INFORMS, vol. 52(3), pages 465-471, March.
    2. Hasan Cavusoglu & Huseyin Cavusoglu & Jun Zhang, 2008. "Security Patch Management: Share the Burden or Share the Damage?," Management Science, INFORMS, vol. 54(4), pages 657-670, April.
    3. Madhu Jain & Kriti Priya, 2005. "Software Reliability Issues Under Operational And Testing Constraints," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 33-49.
    4. P.K. Kapur & Hoang Pham & A. Gupta & P.C. Jha, 2011. "Software Reliability Assessment with OR Applications," Springer Series in Reliability Engineering, Springer, number 978-0-85729-204-9, September.
    5. Peng, R. & Li, Y.F. & Zhang, W.J. & Hu, Q.P., 2014. "Testing effort dependent software reliability model for imperfect debugging process considering both detection and correction," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 37-43.
    6. Ashish Arora & Rahul Telang & Hao Xu, 2008. "Optimal Policy for Software Vulnerability Disclosure," Management Science, INFORMS, vol. 54(4), pages 642-656, April.
    7. Babu Zachariah, 2015. "Optimal stopping time in software testing based on failure size approach," Annals of Operations Research, Springer, vol. 235(1), pages 771-784, December.
    8. Debabrata Dey & Atanu Lahiri & Guoying Zhang, 2015. "Optimal Policies for Security Patch Management," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 462-477, August.
    9. Hoang Pham, 2006. "System Software Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-295-9, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 2020. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 196-207, July.
    2. Chetna Choudhary & P. K. Kapur & Sunil K. Khatri & R. Muthukumar & Avinash K. Shrivastava, 2020. "Effort based release time of software for detection and correction processes using MAUT," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 367-378, July.
    3. Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 0. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yogita Kansal & Gurinder Singh & Uday Kumar & P. K. Kapur, 2016. "Optimal release and patching time of software with warranty," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 462-468, December.
    2. Debabrata Dey & Atanu Lahiri & Guoying Zhang, 2015. "Optimal Policies for Security Patch Management," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 462-477, August.
    3. Terrence August & Duy Dao & Marius Florin Niculescu, 2022. "Economics of Ransomware: Risk Interdependence and Large-Scale Attacks," Management Science, INFORMS, vol. 68(12), pages 8979-9002, December.
    4. Terrence August & Duy Dao & Kihoon Kim, 2019. "Market Segmentation and Software Security: Pricing Patching Rights," Management Science, INFORMS, vol. 65(10), pages 4575-4597, October.
    5. Terrence August & Marius Florin Niculescu, 2013. "The Influence of Software Process Maturity and Customer Error Reporting on Software Release and Pricing," Management Science, INFORMS, vol. 59(12), pages 2702-2726, December.
    6. Arora, Ashish & Forman, Chris & Nandkumar, Anand & Telang, Rahul, 2010. "Competition and patching of security vulnerabilities: An empirical analysis," Information Economics and Policy, Elsevier, vol. 22(2), pages 164-177, May.
    7. Ashish Arora & Ramayya Krishnan & Rahul Telang & Yubao Yang, 2010. "An Empirical Analysis of Software Vendors' Patch Release Behavior: Impact of Vulnerability Disclosure," Information Systems Research, INFORMS, vol. 21(1), pages 115-132, March.
    8. Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 2020. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 196-207, July.
    9. Wang, Jinyong & Wu, Zhibo, 2016. "Study of the nonlinear imperfect software debugging model," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 180-192.
    10. Ioannidis, Christos & Pym, David & Williams, Julian, 2012. "Information security trade-offs and optimal patching policies," European Journal of Operational Research, Elsevier, vol. 216(2), pages 434-444.
    11. Terrence August & Tunay I. Tunca, 2011. "Who Should Be Responsible for Software Security? A Comparative Analysis of Liability Policies in Network Environments," Management Science, INFORMS, vol. 57(5), pages 934-959, May.
    12. Vidyanand Choudhary & Zhe (James) Zhang, 2015. "Research Note—Patching the Cloud: The Impact of SaaS on Patching Strategy and the Timing of Software Release," Information Systems Research, INFORMS, vol. 26(4), pages 845-858, December.
    13. Li, Bo & Tan, Zhen & Arreola-Risa, Antonio & Huang, Yiwei, 2023. "On the improvement of uncertain cloud service capacity," International Journal of Production Economics, Elsevier, vol. 258(C).
    14. Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 0. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
    15. Terrence August & Marius Florin Niculescu & Hyoduk Shin, 2014. "Cloud Implications on Software Network Structure and Security Risks," Information Systems Research, INFORMS, vol. 25(3), pages 489-510, September.
    16. Ravi Sen & Joobin Choobineh & Subodha Kumar, 2020. "Determinants of Software Vulnerability Disclosure Timing," Production and Operations Management, Production and Operations Management Society, vol. 29(11), pages 2532-2552, November.
    17. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    18. Sabyasachi Mitra & Sam Ransbotham, 2015. "Information Disclosure and the Diffusion of Information Security Attacks," Information Systems Research, INFORMS, vol. 26(3), pages 565-584, September.
    19. Alain Bensoussan & Vijay Mookerjee & Wei T. Yue, 2020. "Managing Information System Security Under Continuous and Abrupt Deterioration," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1894-1917, August.
    20. Byun, Ji-Eun & Noh, Hee-Min & Song, Junho, 2017. "Reliability growth analysis of k-out-of-N systems using matrix-based system reliability method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 410-421.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:7:y:2016:i:4:d:10.1007_s13198-016-0470-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.