IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v16y2025i7d10.1007_s13198-025-02814-4.html
   My bibliography  Save this article

Classical and non-informative bayesian inference of Spmk for Nakagami distribution based on first-failure progressively censored samples

Author

Listed:
  • Sanku Dey

    (St. Anthony’s College)

  • Riyadh Al-Mosawi

    (St. Anthony’s College
    University of Thi-Qar)

  • Devendra Kumar

    (University of Delhi)

Abstract

This study uses the Progressive First Failure Type-II Censoring Scheme (PFFT2CS) to estimate the Process Capability Index (PCI), Spmk, for the Nakagami Distribution (ND). Using maximum likelihood, maximum product spacing, and Bayesian estimation techniques, Spmk is calculated on the basis of PFFT2CS. Using noninformative prior, the Bayes estimator of Spmk is produced for the linear exponential (LINEX) loss function, the squared error loss function, and the generalised entropy loss function. Additionally, the approximate confidence intervals (CIs) for the index Spmk that were derived using both traditional approaches and the highest posterior density (HPD) credible intervals are compared. The performance of the classical and Bayes estimates of Spmk with respect to their mean squared errors is evaluated in a simulation exercise, and the average width and coverage probabilities of the CIs and HPDs intervals are compared. Two actual data sets are reanalyzed in order to illustrate the efficacy of the suggested index and estimation approaches.

Suggested Citation

  • Sanku Dey & Riyadh Al-Mosawi & Devendra Kumar, 2025. "Classical and non-informative bayesian inference of Spmk for Nakagami distribution based on first-failure progressively censored samples," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 16(7), pages 2561-2580, July.
  • Handle: RePEc:spr:ijsaem:v:16:y:2025:i:7:d:10.1007_s13198-025-02814-4
    DOI: 10.1007/s13198-025-02814-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-025-02814-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-025-02814-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Grigoriy Volovskiy & Udo Kamps, 2020. "Maximum product of spacings prediction of future record values," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 853-868, October.
    2. Francisco A. Segovia & Yolanda M. Gómez & Osvaldo Venegas & Héctor W. Gómez, 2020. "A Power Maxwell Distribution with Heavy Tails and Applications," Mathematics, MDPI, vol. 8(7), pages 1-20, July.
    3. E. M. Almetwally & H. M. Almongy & M. K. Rastogi & M. Ibrahim, 2020. "Maximum Product Spacing Estimation of Weibull Distribution Under Adaptive Type-II Progressive Censoring Schemes," Annals of Data Science, Springer, vol. 7(2), pages 257-279, June.
    4. Wu, Shuo-Jye & Kus, Coskun, 2009. "On estimation based on progressive first-failure-censored sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3659-3670, August.
    5. Sudhansu S. Maiti & Mahendra Saha, 2012. "Bayesian Estimation of Generalized Process Capability Indices," Journal of Probability and Statistics, Hindawi, vol. 2012, pages 1-15, February.
    6. Kapil Kumar & Renu Garg & Hare Krishna, 2017. "Nakagami distribution as a reliability model under progressive censoring," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 109-122, March.
    7. Ajit Chaturvedi & Renu Garg & Shubham Saini, 2022. "Estimation and testing procedures for the reliability characteristics of Kumaraswamy-G distributions based on the progressively first failure censored samples," OPSEARCH, Springer;Operational Research Society of India, vol. 59(2), pages 494-517, June.
    8. Anatolyev, Stanislav & Kosenok, Grigory, 2005. "An Alternative To Maximum Likelihood Based On Spacings," Econometric Theory, Cambridge University Press, vol. 21(2), pages 472-476, April.
    9. El-Sherpieny, El-Sayed A. & Almetwally, Ehab M. & Muhammed, Hiba Z., 2020. "Progressive Type-II hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    10. Sajid Ali & Muhammad Riaz, 2014. "On the generalized process capability under simple and mixture models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 832-852, April.
    11. Rashad M. EL-Sagheer & Mustafa M. Hasaballah, 2020. "Inference of Process Capability Index for 3-Burr-XII Distribution Based on Progressive Type-II Censoring," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2020, pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Wang & Sanku Dey & Yogesh Mani Tripathi, 2022. "Classical and Bayesian Inference of the Inverse Nakagami Distribution Based on Progressive Type-II Censored Samples," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
    2. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
    3. Ashish Kumar Shukla & Sakshi Soni & Kapil Kumar, 2023. "An inferential analysis for the Weibull-G family of distributions under progressively censored data," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1488-1524, September.
    4. Anita Kumari & Kapil Kumar & Indrajeet Kumar, 2024. "Bayesian and classical inference in Maxwell distribution under adaptive progressively Type-II censored data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(3), pages 1015-1036, March.
    5. O. E. Abo-Kasem & Ehab M. Almetwally & Wael S. Abu El Azm, 2023. "Inferential Survival Analysis for Inverted NH Distribution Under Adaptive Progressive Hybrid Censoring with Application of Transformer Insulation," Annals of Data Science, Springer, vol. 10(5), pages 1237-1284, October.
    6. R. Alshenawy & Ali Al-Alwan & Ehab M. Almetwally & Ahmed Z. Afify & Hisham M. Almongy, 2020. "Progressive Type-II Censoring Schemes of Extended Odd Weibull Exponential Distribution with Applications in Medicine and Engineering," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    7. Hiba Z. Muhammed & Ehab M. Almetwally, 2023. "Bayesian and Non-Bayesian Estimation for the Bivariate Inverse Weibull Distribution Under Progressive Type-II Censoring," Annals of Data Science, Springer, vol. 10(2), pages 481-512, April.
    8. Sanku Dey & Ahmed Elshahhat & Mazen Nassar, 2023. "Analysis of progressive type-II censored gamma distribution," Computational Statistics, Springer, vol. 38(1), pages 481-508, March.
    9. Sanku Dey & Mahendra Saha & M. Z. Anis & Sudhansu S. Maiti & Sumit Kumar, 2023. "Estimation and confidence intervals of $$C_{Np}(u,v)$$ C Np ( u , v ) for logistic-exponential distribution with application," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 431-446, March.
    10. Aleksey S. Gvozdarev, 2024. "Closed-Form Performance Analysis of the Inverse Power Lomax Fading Channel Model," Mathematics, MDPI, vol. 12(19), pages 1-25, October.
    11. Ahmed Soliman & N. Abou-elheggag & A. Abd ellah & A. Modhesh, 2012. "Bayesian and non-Bayesian inferences of the Burr-XII distribution for progressive first-failure censored data," METRON, Springer;Sapienza Università di Roma, vol. 70(1), pages 1-25, April.
    12. Subhankar Dutta & Sanku Dey & Suchandan Kayal, 2024. "Bayesian survival analysis of logistic exponential distribution for adaptive progressive Type-II censored data," Computational Statistics, Springer, vol. 39(4), pages 2109-2155, June.
    13. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    14. E. M. Almetwally & H. M. Almongy & M. K. Rastogi & M. Ibrahim, 2020. "Maximum Product Spacing Estimation of Weibull Distribution Under Adaptive Type-II Progressive Censoring Schemes," Annals of Data Science, Springer, vol. 7(2), pages 257-279, June.
    15. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    16. Y. L. Lio & Tzong-Ru Tsai, 2012. "Estimation of δ= P ( X > Y ) for Burr XII distribution based on the progressively first failure-censored samples," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 309-322, April.
    17. Rahul Singh & Neeraj Misra, 2023. "A class of estimators based on overlapping sample spacings," Statistical Papers, Springer, vol. 64(6), pages 2137-2160, December.
    18. Wang, Liang & Shi, Yimin, 2012. "Reliability analysis based on progressively first-failure-censored samples for the proportional hazard rate model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(8), pages 1383-1395.
    19. Abdullah Fathi & Al-Wageh A. Farghal & Ahmed A. Soliman, 2024. "Inference on Weibull inverted exponential distribution under progressive first-failure censoring with constant-stress partially accelerated life test," Statistical Papers, Springer, vol. 65(8), pages 5021-5053, October.
    20. Suparna Basu & Sanjay Kumar Singh & Umesh Singh, 2017. "Parameter estimation of inverse Lindley distribution for Type-I censored data," Computational Statistics, Springer, vol. 32(1), pages 367-385, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:16:y:2025:i:7:d:10.1007_s13198-025-02814-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.