IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i20p4323-d1261585.html
   My bibliography  Save this article

Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution

Author

Listed:
  • Amel Abd-El-Monem

    (Department of Mathematics, Faculty of Education, Ain-Shams University, Cairo 11566, Egypt)

  • Mohamed S. Eliwa

    (Department of Statistics and Operation Research, College of Science, Qassim University, Buraydah 51482, Saudi Arabia
    Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt)

  • Mahmoud El-Morshedy

    (Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
    Department of Statistics and Computer Science, Faculty of Science, Mansoura University, Mansoura 35516, Egypt)

  • Afrah Al-Bossly

    (Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia)

  • Rashad M. EL-Sagheer

    (Mathematics Department, Faculty of Science, Al-Azhar University, Naser City, Cairo 11884, Egypt
    High Institute of Computer and Management Information System, First Statement, New Cairo, Cairo 11865, Egypt)

Abstract

Monitoring life-testing trials for a product or substance often demands significant time and effort. To expedite this process, sometimes units are subjected to more severe conditions in what is known as accelerated life tests. This paper is dedicated to addressing the challenge of estimating the power hazard distribution, both in terms of point and interval estimations, during constant- stress partially accelerated life tests using progressive first failure censored samples. Three techniques are employed for this purpose: maximum likelihood, two parametric bootstraps, and Bayesian methods. These techniques yield point estimates for unknown parameters and the acceleration factor. Additionally, we construct approximate confidence intervals and highest posterior density credible intervals for both the parameters and acceleration factor. The former relies on the asymptotic distribution of maximum likelihood estimators, while the latter employs the Markov chain Monte Carlo technique and focuses on the squared error loss function. To assess the effectiveness of these estimation methods and compare the performance of their respective confidence intervals, a simulation study is conducted. Finally, we validate these inference techniques using real-life engineering data.

Suggested Citation

  • Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4323-:d:1261585
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/20/4323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/20/4323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Shuo-Jye & Kus, Coskun, 2009. "On estimation based on progressive first-failure-censored sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3659-3670, August.
    2. N. Balakrishnan, 2007. "Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 211-259, August.
    3. Mazen Nassar & Farouq Mohammad A. Alam, 2022. "Analysis of Modified Kies Exponential Distribution with Constant Stress Partially Accelerated Life Tests under Type-II Censoring," Mathematics, MDPI, vol. 10(5), pages 1-26, March.
    4. N. Balakrishnan, 2007. "Rejoinder on: Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 290-296, August.
    5. Mohammad Vali Ahmadi & Mahdi Doostparast, 2019. "Pareto analysis for the lifetime performance index of products on the basis of progressively first-failure-censored batches under balanced symmetric and asymmetric loss functions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(7), pages 1196-1227, May.
    6. Rashad M. EL-Sagheer, 2018. "Estimation of parameters of Weibull–Gamma distribution based on progressively censored data," Statistical Papers, Springer, vol. 59(2), pages 725-757, June.
    7. Mahmoud El-Morshedy & Hassan M. Aljohani & Mohamed S. Eliwa & Mazen Nassar & Mohammed K. Shakhatreh & Ahmed Z. Afify, 2021. "The Exponentiated Burr–Hatke Distribution and Its Discrete Version: Reliability Properties with CSALT Model, Inference and Applications," Mathematics, MDPI, vol. 9(18), pages 1-26, September.
    8. Zhuang, Liangliang & Xu, Ancha & Wang, Xiao-Lin, 2023. "A prognostic driven predictive maintenance framework based on Bayesian deep learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Arnold, Barry C. & Press, S. James, 1983. "Bayesian inference for pareto populations," Journal of Econometrics, Elsevier, vol. 21(3), pages 287-306, April.
    10. Luo, Chunling & Shen, Lijuan & Xu, Ancha, 2022. "Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    11. Alaa Abdel-Hamid & Essam AL-Hussaini, 2007. "Progressive stress accelerated life tests under finite mixture models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 66(2), pages 213-231, September.
    12. Mazen Nassar & Refah Alotaibi & Ahmed Elshahhat, 2023. "Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    13. Kundu, Debasis & Howlader, Hatem, 2010. "Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1547-1558, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdullah Fathi & Al-Wageh A. Farghal & Ahmed A. Soliman, 2022. "Bayesian and Non-Bayesian Inference for Weibull Inverted Exponential Model under Progressive First-Failure Censoring Data," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    2. Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
    3. M. Hermanns & E. Cramer, 2018. "Inference with progressively censored k-out-of-n system lifetime data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 787-810, December.
    4. Teena Goyal & Piyush K. Rai & Sandeep K. Maurya, 2020. "Bayesian Estimation for GDUS Exponential Distribution Under Type-I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 7(2), pages 307-345, June.
    5. Musleh, Rola M. & Helu, Amal, 2014. "Estimation of the inverse Weibull distribution based on progressively censored data: Comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 216-227.
    6. Manoj Kumar Rastogi & Yogesh Mani Tripathi, 2014. "Estimation for an inverted exponentiated Rayleigh distribution under type II progressive censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2375-2405, November.
    7. Soliman, Ahmed A. & Abd-Ellah, Ahmed H. & Abou-Elheggag, Naser A. & Abd-Elmougod, Gamal A., 2012. "Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2471-2485.
    8. Haiping Ren & Xue Hu, 2023. "Bayesian Estimations of Shannon Entropy and Rényi Entropy of Inverse Weibull Distribution," Mathematics, MDPI, vol. 11(11), pages 1-16, May.
    9. Essam A. Ahmed, 2017. "Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(9), pages 1576-1608, July.
    10. Sukhdev Singh & Yogesh Mani Tripathi, 2018. "Estimating the parameters of an inverse Weibull distribution under progressive type-I interval censoring," Statistical Papers, Springer, vol. 59(1), pages 21-56, March.
    11. Heba S. Mohammed & Saieed F. Ateya & Essam K. AL-Hussaini, 2017. "Estimation based on progressive first-failure censoring from exponentiated exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1479-1494, June.
    12. Essam A. Ahmed & Mahmoud El-Morshedy & Laila A. Al-Essa & Mohamed S. Eliwa, 2023. "Statistical Inference on the Entropy Measures of Gamma Distribution under Progressive Censoring: EM and MCMC Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-30, May.
    13. Essam AL-Hussaini & Alaa Abdel-Hamid & Atef Hashem, 2015. "One-sample Bayesian prediction intervals based on progressively type-II censored data from the half-logistic distribution under progressive stress model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 771-783, October.
    14. Mazen Nassar & Refah Alotaibi & Ahmed Elshahhat, 2023. "Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    15. Park, Sangun & Ng, Hon Keung Tony & Chan, Ping Shing, 2015. "On the Fisher information and design of a flexible progressive censored experiment," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 142-149.
    16. Ahmed Soliman & N. Abou-elheggag & A. Abd ellah & A. Modhesh, 2012. "Bayesian and non-Bayesian inferences of the Burr-XII distribution for progressive first-failure censored data," METRON, Springer;Sapienza Università di Roma, vol. 70(1), pages 1-25, April.
    17. Rui Hua & Wenhao Gui, 2022. "Revisit to progressively Type-II censored competing risks data from Lomax distributions," Journal of Risk and Reliability, , vol. 236(3), pages 377-394, June.
    18. Olayan Albalawi & Naresh Chandra Kabdwal & Qazi J. Azhad & Rashi Hora & Basim S. O. Alsaedi, 2022. "Estimation of the Generalized Logarithmic Transformation Exponential Distribution under Progressively Type-II Censored Data with Application to the COVID-19 Mortality Rates," Mathematics, MDPI, vol. 10(7), pages 1-19, March.
    19. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.
    20. Wu, Shuo-Jye & Huang, Syuan-Rong, 2017. "Planning two or more level constant-stress accelerated life tests with competing risks," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4323-:d:1261585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.