IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i7d10.1007_s13198-024-02324-9.html
   My bibliography  Save this article

Hybrid dynamic arithmetic city council optimization for improved rainfall prediction

Author

Listed:
  • P. Lathika

    (Noorul Islam Centre for Higher Education)

  • D. Sheeba Singh

    (Noorul Islam Centre for Higher Education)

Abstract

In the meteorological department rainfall prediction is one of the complex tasks because it is directly linked to human life and the Indian economy. There is a significant demand for accurate and effective rainfall prediction methods to make better decisions regarding precautionary measures. To predict rainfall amounts effectively, this study proposed a novel rainfall prediction method named the Hybrid Dynamic Arithmetic City Council Optimization (HDACO) algorithm. The proposed HDACO method is a combination of two algorithms namely the Dynamic Arithmetic Optimization (DAO) algorithm and the City Councils Evolution (CCE) algorithm. The study utilizes preprocessing steps namely data cleaning, filling missing values, and data normalization. After preprocessing, the features closely related to rainfall prediction are selected by the computation of the correlation matrix. Finally, based on the features selected the HDACO algorithm predicts the amount of rainfall. The HDACO algorithm is evaluated using an open weather dataset and the effectiveness of the HDACO algorithm is validated using measures such as rainfall rate, Mean Absolute Error (MAE), coefficient of determination (R2), and Root Mean Square Error (RMSE). As a result, the HDACO algorithm achieved RMSE of 0.272, MAE of 0.184, and R2 of 0.97 respectively. The performance of the HDACO algorithm is compared with existing methods and the results demonstrate the better performance of the HDACO algorithm in rainfall prediction.

Suggested Citation

  • P. Lathika & D. Sheeba Singh, 2024. "Hybrid dynamic arithmetic city council optimization for improved rainfall prediction," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(7), pages 3182-3192, July.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:7:d:10.1007_s13198-024-02324-9
    DOI: 10.1007/s13198-024-02324-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02324-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02324-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duong Tran Anh & Thanh Duc Dang & Song Pham Van, 2019. "Improved Rainfall Prediction Using Combined Pre-Processing Methods and Feed-Forward Neural Networks," J, MDPI, vol. 2(1), pages 1-19, February.
    2. Kumar, Nikhil & Poonia, Vikas & Gupta, B.B. & Goyal, Manish Kumar, 2021. "A novel framework for risk assessment and resilience of critical infrastructure towards climate change," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pornpit Wongthongtham & Bilal Abu-Salih & Jeff Huang & Hemixa Patel & Komsun Siripun, 2023. "A Multi-Criteria Analysis Approach to Identify Flood Risk Asset Damage Hotspots in Western Australia," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    2. Hinge, Gilbert & Surampalli, Rao Y. & Goyal, Manish Kumar & Gupta, Brij B. & Chang, Xiaojun, 2021. "Soil carbon and its associate resilience using big data analytics: For food Security and environmental management," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    3. Khan Babar, Abdul Haseeb & Ali, Yousaf, 2022. "Framework construction for augmentation of resilience in critical infrastructure: Developing countries a case in point," Technology in Society, Elsevier, vol. 68(C).
    4. Shobande, Olatunji A. & Ogbeifun, Lawrence & Tiwari, Aviral Kumar, 2024. "Unlocking information technology infrastructure for promoting climate resilience and environmental quality," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    5. Qayyum, Abdul & Razzak, Imran & Malik, Aamir Saeed & Anwar, Sajid, 2021. "Fusion of CNN and sparse representation for threat estimation near power lines and poles infrastructure using aerial stereo imagery," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    6. Seol A. Kwon, 2022. "Where Does an Individual’s Willingness to Act on Alleviating the Climate Crisis in Korea Arise from?," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
    7. Yu, Hongxin & Zhao, Yuanjun & Liu, Zheng & Liu, Wei & Zhang, Shuai & Wang, Fatao & Shi, Lihua, 2021. "Research on the financing income of supply chains based on an E-commerce platform," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    8. Å arÅ«nienÄ—, Inga & MartiÅ¡auskas, Linas & KrikÅ¡tolaitis, RiÄ ardas & Augutis, Juozas & Setola, Roberto, 2024. "Risk assessment of critical infrastructures: A methodology based on criticality of infrastructure elements," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Jha, Srinidhi & Goyal, Manish Kumar & Gupta, Brij & Gupta, Anil Kumar, 2021. "A novel analysis of COVID 19 risk in India incorporating climatic and socioeconomic Factors," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    10. Ebrahimi Shahabadi, Mohammad Saleh & Tabrizchi, Hamed & Kuchaki Rafsanjani, Marjan & Gupta, B.B. & Palmieri, Francesco, 2021. "A combination of clustering-based under-sampling with ensemble methods for solving imbalanced class problem in intelligent systems," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    11. Qingmu Su & Hsueh-Sheng Chang & Shin-En Pai, 2022. "A Comparative Study of the Resilience of Urban and Rural Areas under Climate Change," IJERPH, MDPI, vol. 19(15), pages 1-14, July.
    12. Xu, Min & Li, Guoyuan & Chen, Anthony, 2024. "Resilience-driven post-disaster restoration of interdependent infrastructure systems under different decision-making environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    13. Muhamad Deni Johansyah & Sundarapandian Vaidyanathan & Khaled Benkouider & Aceng Sambas & Kandimalla Mallikarjuna Rao & Katuru Anjaneyulu, 2025. "Exploring Chaos and Stability in a 3-D Finance Model with Absolute Function Nonlinearity," Mathematics, MDPI, vol. 13(5), pages 1-16, February.
    14. Kumar, Aman & Shankar, Amit & Behl, Abhishek & Arya, Varsha & Gupta, Nakul, 2023. "Should I share it? Factors influencing fake news-sharing behaviour: A behavioural reasoning theory perspective," Technological Forecasting and Social Change, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:7:d:10.1007_s13198-024-02324-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.