IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i2d10.1007_s13198-022-01692-4.html
   My bibliography  Save this article

Application of artificial bee colony algorithm on a green production inventory problem with preservation for deteriorating items in neutrosophic fuzzy environment

Author

Listed:
  • Puja Supakar

    (Sidho-Kanho-Birsha University)

  • Amalesh Kumar Manna

    (The University of Burdwan
    C. V. Raman Global University)

  • Sanat Kumar Mahato

    (Sidho-Kanho-Birsha University)

  • Asoke Kumar Bhunia

    (The University of Burdwan)

Abstract

Due to fluctuation of the market and several other reasons, most of the parameters related to the production inventory system, like, deterioration rate, demand rate and different costs are not always constants. These parameters involve some sorts of impreciseness which may be represented by stochastic, fuzzy, fuzzy-stochastic, interval, intuitionistic fuzzy, neutrosophic fuzzy, etc. approaches. In this work, a green production model is formulated for deteriorating items in neutrosophic uncertain environment. In this proposed model, customers’ demand rates are influenced by their green level and the selling price of the manufacturing goods. Here, it is also considered that the deterioration rate is dependent on preservation investment whereas the production cost is dependent on the product’s green level. We have designed, analyzed, and solved the proposed model in crisp, neutrosophic and crispified forms. To illustrate this model numerically, two examples are constructed and solved by an artificial bee colony algorithm. Finally, sensitivity analyses are conducted graphically with respect to some of the system parameters involved in the crispified model.

Suggested Citation

  • Puja Supakar & Amalesh Kumar Manna & Sanat Kumar Mahato & Asoke Kumar Bhunia, 2024. "Application of artificial bee colony algorithm on a green production inventory problem with preservation for deteriorating items in neutrosophic fuzzy environment," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(2), pages 672-686, February.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:2:d:10.1007_s13198-022-01692-4
    DOI: 10.1007/s13198-022-01692-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-022-01692-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-022-01692-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hung, Kuo-Chen, 2011. "An inventory model with generalized type demand, deterioration and backorder rates," European Journal of Operational Research, Elsevier, vol. 208(3), pages 239-242, February.
    2. S. Priyan & R. Uthayakumar, 2016. "Economic Design of Multi-echelon Inventory System with Variable Lead Time and Service Level Constraint in a Fuzzy Cost Environment," Fuzzy Information and Engineering, Taylor & Francis Journals, vol. 8(4), pages 465-511, December.
    3. Umakanta Mishra & Leopoldo Eduardo Cárdenas-Barrón & Sunil Tiwari & Ali Akbar Shaikh & Gerardo Treviño-Garza, 2017. "An inventory model under price and stock dependent demand for controllable deterioration rate with shortages and preservation technology investment," Annals of Operations Research, Springer, vol. 254(1), pages 165-190, July.
    4. Mohammad Ehsan Souri & Reza Sheikh & Fatemeh Sajjadian & Shib Sankar Sana, 2021. "Product acceptance: service preference based on e-service quality using g-rough set theory," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 37(4), pages 527-543.
    5. Erfan Zarafshan & Samira Rezaei Toroghi & Reza Sheikh & Shib Sankar Sana, 2021. "The analysis and interpretation of quality cost using rough set theory: a case study from the ceramic industry," International Journal of Service and Computing Oriented Manufacturing, Inderscience Enterprises Ltd, vol. 4(1), pages 11-31.
    6. Mehran Ullah & Biswajit Sarkar & Iqra Asghar, 2019. "Effects of Preservation Technology Investment on Waste Generation in a Two-Echelon Supply Chain Model," Mathematics, MDPI, vol. 7(2), pages 1-20, February.
    7. Dye, Chung-Yuan, 2013. "The effect of preservation technology investment on a non-instantaneous deteriorating inventory model," Omega, Elsevier, vol. 41(5), pages 872-880.
    8. A. K. Manna & B. Das & J. K. Dey & S. K. Mondal, 2018. "An EPQ model with promotional demand in random planning horizon: population varying genetic algorithm approach," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1515-1531, October.
    9. Dong, Ciwei & Liu, Qingyu & Shen, Bin, 2019. "To be or not to be green? Strategic investment for green product development in a supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 193-227.
    10. Dye, Chung-Yuan & Hsieh, Tsu-Pang, 2012. "An optimal replenishment policy for deteriorating items with effective investment in preservation technology," European Journal of Operational Research, Elsevier, vol. 218(1), pages 106-112.
    11. Ghosh, Debabrata & Shah, Janat, 2015. "Supply chain analysis under green sensitive consumer demand and cost sharing contract," International Journal of Production Economics, Elsevier, vol. 164(C), pages 319-329.
    12. Evan L. Porteus, 1986. "Optimal Lot Sizing, Process Quality Improvement and Setup Cost Reduction," Operations Research, INFORMS, vol. 34(1), pages 137-144, February.
    13. Hsu, P.H. & Wee, H.M. & Teng, H.M., 2010. "Preservation technology investment for deteriorating inventory," International Journal of Production Economics, Elsevier, vol. 124(2), pages 388-394, April.
    14. Sana, Shib Sankar, 2020. "Price competition between green and non green products under corporate social responsible firm," Journal of Retailing and Consumer Services, Elsevier, vol. 55(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabi Hanukov, 2025. "A queueing-inventory system with a repeated-orbit policy during the service," Annals of Operations Research, Springer, vol. 344(2), pages 877-909, January.
    2. Priyamvada & Prerna Gautam & Aditi Khanna, 2021. "Sustainable production strategies for deteriorating and imperfect quality items with an investment in preservation technology," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 910-918, October.
    3. Jui-Jung Liao & H. M. Srivastava & Shy-Der Lin, 2024. "Inventory models for non-instantaneous deteriorating items with expiration dates under the joined effect of preservation technology and linearly time-dependent holding cost when order-size linked to a," Annals of Operations Research, Springer, vol. 337(1), pages 197-233, June.
    4. Kartick Dey & Debajyoti Chatterjee & Subrata Saha & Ilkyeong Moon, 2019. "Dynamic versus static rebates: an investigation on price, displayed stock level, and rebate-induced demand using a hybrid bat algorithm," Annals of Operations Research, Springer, vol. 279(1), pages 187-219, August.
    5. Sebatjane, Makoena, 2022. "The impact of preservation technology investments on lot-sizing and shipment strategies in a three-echelon food supply chain involving growing and deteriorating items," Operations Research Perspectives, Elsevier, vol. 9(C).
    6. Saha, Subrata & Chatterjee, Debajyoti & Sarkar, Biswajit, 2021. "The ramification of dynamic investment on the promotion and preservation technology for inventory management through a modified flower pollination algorithm," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).
    7. YuJan Shen & KuanFu Shen & ChihTe Yang, 2019. "A Production Inventory Model for Deteriorating Items with Collaborative Preservation Technology Investment Under Carbon Tax," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    8. Li, Guiping & He, Xiuli & Zhou, Jing & Wu, Hao, 2019. "Pricing, replenishment and preservation technology investment decisions for non-instantaneous deteriorating items," Omega, Elsevier, vol. 84(C), pages 114-126.
    9. Jingci Xie & Jianjian Liu & Xin Huo & Qingchun Meng & Mengyu Chu, 2021. "Fresh Food Dual-Channel Supply Chain Considering Consumers’ Low-Carbon and Freshness Preferences," Sustainability, MDPI, vol. 13(11), pages 1-29, June.
    10. Zhang, Jianxiong & Liu, Guowei & Zhang, Qiao & Bai, Zhenyu, 2015. "Coordinating a supply chain for deteriorating items with a revenue sharing and cooperative investment contract," Omega, Elsevier, vol. 56(C), pages 37-49.
    11. Abu Hashan Md Mashud & Dipa Roy & Yosef Daryanto & Mohd Helmi Ali, 2020. "A Sustainable Inventory Model with Imperfect Products, Deterioration, and Controllable Emissions," Mathematics, MDPI, vol. 8(11), pages 1-21, November.
    12. Sudarshan Bardhan & Haimanti Pal & Bibhas Chandra Giri, 2019. "Optimal replenishment policy and preservation technology investment for a non-instantaneous deteriorating item with stock-dependent demand," Operational Research, Springer, vol. 19(2), pages 347-368, June.
    13. Vandana & A. K. Das, 2022. "Two-warehouse supply chain model under preservation technology and stochastic demand with shortages," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1587-1612, December.
    14. Lei Yan & Jianhao Gao & Shuang Wang & Shandong Mou & Guangye Xu & Haiyan Wang, 2023. "Product Quality Matching Strategy in a Dual-Channel Supply Chain: A Perspective From Mental Accounting Theory in Behavioral Finance," SAGE Open, , vol. 13(2), pages 21582440231, May.
    15. Dharamender Singh & Anurag Jayswal & Majed G. Alharbi & Ali Akbar Shaikh, 2021. "An Investigation of a Supply Chain Model for Co-Ordination of Finished Products and Raw Materials in a Production System under Different Situations," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    16. Hanukov, Gabi & Avinadav, Tal & Chernonog, Tatyana & Yechiali, Uri, 2019. "Performance improvement of a service system via stocking perishable preliminary services," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1000-1011.
    17. Hanukov, Gabi, 2022. "Improving efficiency of service systems by performing a part of the service without the customer's presence," European Journal of Operational Research, Elsevier, vol. 302(2), pages 606-620.
    18. Umakanta Mishra & Leopoldo Eduardo Cárdenas-Barrón & Sunil Tiwari & Ali Akbar Shaikh & Gerardo Treviño-Garza, 2017. "An inventory model under price and stock dependent demand for controllable deterioration rate with shortages and preservation technology investment," Annals of Operations Research, Springer, vol. 254(1), pages 165-190, July.
    19. Dye, Chung-Yuan & Yang, Chih-Te, 2016. "Optimal dynamic pricing and preservation technology investment for deteriorating products with reference price effects," Omega, Elsevier, vol. 62(C), pages 52-67.
    20. Limin Su & Yongchao Cao & Wenjuan Zhang, 2023. "Low-Carbon Supply Chain Operation Decisions and Coordination Strategies Considering the Consumers’ Preferences," Sustainability, MDPI, vol. 15(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:2:d:10.1007_s13198-022-01692-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.