IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v10y2019i3d10.1007_s13198-019-00779-9.html
   My bibliography  Save this article

Artificial immune system based approach for size and location optimization of distributed generation in distribution system

Author

Listed:
  • Vikas Singh Bhadoria

    (ABES, Engineering College)

  • Nidhi Singh Pal

    (Gautam Buddha University)

  • Vivek Shrivastava

    (National Institute of Technology)

Abstract

An increase in the share of distributed generation (DG) in the global generation system is a direct indication of the development of available technologies. The extraction of natural energy resources and their use as DG has several advantages, such as the reduction in line losses, improved voltage profile and reliability, etc., but the incorrect installation of these power plants can also have some negative effects. The innovation in technology has motivated to extract the maximum benefit of natural energy resources. Due to this, the capacity and location of these energy resources should be carefully identified. The optimal placement of a distributed generation power plant, in the existing network, is analyzed in this article. The proposed methodology is inspired by the human immune system. In this methodology clonal selection principle of immune system is combined with particle swarm optimization. For checking the validity of the proposed method two test systems, IEEE 33-node radial distribution system and IEEE 14-node loop distribution system, are considered. Results show the validity of the proposed algorithm in radial as well as in loop distribution system.

Suggested Citation

  • Vikas Singh Bhadoria & Nidhi Singh Pal & Vivek Shrivastava, 2019. "Artificial immune system based approach for size and location optimization of distributed generation in distribution system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 339-349, June.
  • Handle: RePEc:spr:ijsaem:v:10:y:2019:i:3:d:10.1007_s13198-019-00779-9
    DOI: 10.1007/s13198-019-00779-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-019-00779-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-019-00779-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muttaqi, K.M. & Le, An D.T. & Aghaei, J. & Mahboubi-Moghaddam, E. & Negnevitsky, M. & Ledwich, G., 2016. "Optimizing distributed generation parameters through economic feasibility assessment," Applied Energy, Elsevier, vol. 165(C), pages 893-903.
    2. Prakash, Prem & Khatod, Dheeraj K., 2016. "Optimal sizing and siting techniques for distributed generation in distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 111-130.
    3. Esmaeili, Mobin & Sedighizadeh, Mostafa & Esmaili, Masoud, 2016. "Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty," Energy, Elsevier, vol. 103(C), pages 86-99.
    4. Singh, Bindeshwar & Mukherjee, V. & Tiwari, Prabhakar, 2016. "Genetic algorithm for impact assessment of optimally placed distributed generations with different load models from minimum total MVA intake viewpoint of main substation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1611-1636.
    5. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2013. "Analytical strategies for renewable distributed generation integration considering energy loss minimization," Applied Energy, Elsevier, vol. 105(C), pages 75-85.
    6. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    7. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    8. Esmaili, Masoud & Firozjaee, Esmail Chaktan & Shayanfar, Heidar Ali, 2014. "Optimal placement of distributed generations considering voltage stability and power losses with observing voltage-related constraints," Applied Energy, Elsevier, vol. 113(C), pages 1252-1260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Attar Ali Mohamed & Shimaa Ali & Salem Alkhalaf & Tomonobu Senjyu & Ashraf M. Hemeida, 2019. "Optimal Allocation of Hybrid Renewable Energy System by Multi-Objective Water Cycle Algorithm," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    2. Mandhir Kumar Verma & Vivekananda Mukherjee & Vinod Kumar Yadav & Santosh Ghosh, 2020. "Constraints for effective distribution network expansion planning: an ample review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 531-546, June.
    3. Lenin Kanagasabai, 2022. "Real power loss reduction by quantum based Ptilonorhynchus violaceus optimization and Haliastur Indus algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1913-1931, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    2. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    3. Kadir Doğanşahin & Bedri Kekezoğlu & Recep Yumurtacı & Ozan Erdinç & João P. S. Catalão, 2018. "Maximum Permissible Integration Capacity of Renewable DG Units Based on System Loads," Energies, MDPI, vol. 11(1), pages 1-16, January.
    4. Fu, Xueqian & Chen, Haoyong & Cai, Runqing & Yang, Ping, 2015. "Optimal allocation and adaptive VAR control of PV-DG in distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 173-182.
    5. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    6. Zeeshan Memon Anjum & Dalila Mat Said & Mohammad Yusri Hassan & Zohaib Hussain Leghari & Gul Sahar, 2022. "Parallel operated hybrid Arithmetic-Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-38, April.
    7. Pesaran H.A., Mahmoud & Nazari-Heris, Morteza & Mohammadi-Ivatloo, Behnam & Seyedi, Heresh, 2020. "A hybrid genetic particle swarm optimization for distributed generation allocation in power distribution networks," Energy, Elsevier, vol. 209(C).
    8. Prem Prakash & Duli Chand Meena & Hasmat Malik & Majed A. Alotaibi & Irfan Ahmad Khan, 2022. "A Novel Analytical Approach for Optimal Integration of Renewable Energy Sources in Distribution Systems," Energies, MDPI, vol. 15(4), pages 1-23, February.
    9. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    10. Nasreddine Belbachir & Mohamed Zellagui & Samir Settoul & Claude Ziad El-Bayeh & Ragab A. El-Sehiemy, 2023. "Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Al," Energies, MDPI, vol. 16(4), pages 1-24, February.
    11. Yu-Cheol Jeong & Eul-Bum Lee & Douglas Alleman, 2019. "Reducing Voltage Volatility with Step Voltage Regulators: A Life-Cycle Cost Analysis of Korean Solar Photovoltaic Distributed Generation," Energies, MDPI, vol. 12(4), pages 1-16, February.
    12. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    13. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    14. Luo, Lizi & Gu, Wei & Zhang, Xiao-Ping & Cao, Ge & Wang, Weijun & Zhu, Gang & You, Dingjun & Wu, Zhi, 2018. "Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PV-STATCOM)," Applied Energy, Elsevier, vol. 210(C), pages 1092-1100.
    15. Muttaqi, K.M. & Le, An D.T. & Aghaei, J. & Mahboubi-Moghaddam, E. & Negnevitsky, M. & Ledwich, G., 2016. "Optimizing distributed generation parameters through economic feasibility assessment," Applied Energy, Elsevier, vol. 165(C), pages 893-903.
    16. Luis Fernando Grisales-Noreña & Daniel Gonzalez Montoya & Carlos Andres Ramos-Paja, 2018. "Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques," Energies, MDPI, vol. 11(4), pages 1-27, April.
    17. Ahmadigorji, Masoud & Amjady, Nima, 2015. "Optimal dynamic expansion planning of distribution systems considering non-renewable distributed generation using a new heuristic double-stage optimization solution approach," Applied Energy, Elsevier, vol. 156(C), pages 655-665.
    18. Zubo, Rana.H.A. & Mokryani, Geev & Rajamani, Haile-Selassie & Aghaei, Jamshid & Niknam, Taher & Pillai, Prashant, 2017. "Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1177-1198.
    19. Lei Yang & Xiaohui Yang & Yue Wu & Xiaoping Liu, 2018. "Applied Research on Distributed Generation Optimal Allocation Based on Improved Estimation of Distribution Algorithm," Energies, MDPI, vol. 11(9), pages 1-17, September.
    20. Alturki, Mansoor & Khodaei, Amin & Paaso, Aleksi & Bahramirad, Shay, 2018. "Optimization-based distribution grid hosting capacity calculations," Applied Energy, Elsevier, vol. 219(C), pages 350-360.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:10:y:2019:i:3:d:10.1007_s13198-019-00779-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.