IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v33y2024i1d10.1007_s10726-023-09855-9.html
   My bibliography  Save this article

Exploiting Meta-cognitive Features for a Machine-Learning-Based One-Shot Group-Decision Aggregation

Author

Listed:
  • Hilla Shinitzky

    (Ben-Gurion University of the Negev)

  • Dan Avraham

    (Ben-Gurion University of the Negev)

  • Yizhak Vaisman

    (Ben-Gurion University of the Negev)

  • Yakir Tsizer

    (Ben-Gurion University of the Negev)

  • Yaniv Leedon

    (Ben-Gurion University of the Negev)

  • Yuval Shahar

    (Ben-Gurion University of the Negev)

Abstract

The outcome of collective decision-making often relies on the procedure through which the perspectives of its members are aggregated. Popular aggregation methods, such as the majority rule, often fail to produce the optimal result, especially in high-complexity tasks. Methods that rely on meta-cognitive information, such as confidence-based methods and the Surprisingly Popular answer, have succeeded in various tasks. However, there are still scenarios that result in choosing the incorrect answer. We aim to exploit meta-cognitive information and learn from it, to enhance the group’s ability to produce a correct answer. Specifically, we propose two different feature-representation approaches: Response-Centered feature Representation (RCR), which focuses on the characteristics of the individual response, and Answer-Centered feature Representation (ACR), which focuses on the characteristics of each of the potential answers. Using these two feature-representation approaches, we train machine-learning models to predict the correctness of a response and an answer. The trained models are used in our two proposed aggregation approaches: (1) The Response-Prediction (RP) approach aggregates the results of the group’s votes by exploiting the RCR feature-engineering approach; (2) The Answer-Prediction (AP) approach aggregates the results of the group’s votes by exploiting the ACR feature-engineering approach. To evaluate our methodology, we collected 2514 responses for different tasks. The results show a significant increase in the success rate compared to standard rule-based aggregation methods.

Suggested Citation

  • Hilla Shinitzky & Dan Avraham & Yizhak Vaisman & Yakir Tsizer & Yaniv Leedon & Yuval Shahar, 2024. "Exploiting Meta-cognitive Features for a Machine-Learning-Based One-Shot Group-Decision Aggregation," Group Decision and Negotiation, Springer, vol. 33(1), pages 87-111, February.
  • Handle: RePEc:spr:grdene:v:33:y:2024:i:1:d:10.1007_s10726-023-09855-9
    DOI: 10.1007/s10726-023-09855-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-023-09855-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-023-09855-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dražen Prelec & H. Sebastian Seung & John McCoy, 2017. "A solution to the single-question crowd wisdom problem," Nature, Nature, vol. 541(7638), pages 532-535, January.
    2. Joaquin Navajas & Tamara Niella & Gerry Garbulsky & Bahador Bahrami & Mariano Sigman, 2018. "Aggregated knowledge from a small number of debates outperforms the wisdom of large crowds," Nature Human Behaviour, Nature, vol. 2(2), pages 126-132, February.
    3. Clintin P. Davis-Stober & David V. Budescu & Stephen B. Broomell & Jason Dana, 2015. "The Composition of Optimally Wise Crowds," Decision Analysis, INFORMS, vol. 12(3), pages 130-143.
    4. Kay-Yut Chen & Leslie R. Fine & Bernardo A. Huberman, 2004. "Eliminating Public Knowledge Biases in Information-Aggregation Mechanisms," Management Science, INFORMS, vol. 50(7), pages 983-994, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jon Atwell & Marlon Twyman II, 2023. "Metawisdom of the Crowd: How Choice Within Aided Decision Making Can Make Crowd Wisdom Robust," Papers 2308.15451, arXiv.org.
    2. Dai, Min & Jia, Yanwei & Kou, Steven, 2021. "The wisdom of the crowd and prediction markets," Journal of Econometrics, Elsevier, vol. 222(1), pages 561-578.
    3. Shinitzky, Hilla & Shemesh, Yhonatan & Leiser, David & Gilead, Michael, 2024. "Improving geopolitical forecasts with 100 brains and one computer," International Journal of Forecasting, Elsevier, vol. 40(3), pages 958-970.
    4. Michael D. Lee & Megan N. Lee, 2017. "The relationship between crowd majority and accuracy for binary decisions," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 12(4), pages 328-343, July.
    5. Asa B. Palley & Jack B. Soll, 2019. "Extracting the Wisdom of Crowds When Information Is Shared," Management Science, INFORMS, vol. 67(5), pages 2291-2309, May.
    6. repec:cup:judgdm:v:12:y:2017:i:4:p:328-343 is not listed on IDEAS
    7. Jaspersen, Johannes G., 2022. "Convex combinations in judgment aggregation," European Journal of Operational Research, Elsevier, vol. 299(2), pages 780-794.
    8. Ville A. Satopää & Marat Salikhov & Philip E. Tetlock & Barbara Mellers, 2021. "Bias, Information, Noise: The BIN Model of Forecasting," Management Science, INFORMS, vol. 67(12), pages 7599-7618, December.
    9. Cem Peker, 2023. "Extracting the collective wisdom in probabilistic judgments," Theory and Decision, Springer, vol. 94(3), pages 467-501, April.
    10. Brown, Alasdair & Reade, J. James, 2019. "The wisdom of amateur crowds: Evidence from an online community of sports tipsters," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1073-1081.
    11. Peng, Diefeng & Rao, Yulei & Sun, Xianming & Xiao, Erte, 2025. "Optional disclosure and observational learning," Journal of Economic Behavior & Organization, Elsevier, vol. 229(C).
    12. Keser, Claudia & Markstädter, Andreas, 2014. "Informational asymmetries in laboratory asset markets with state-dependent fundamentals," University of Göttingen Working Papers in Economics 207, University of Goettingen, Department of Economics.
    13. Ghezelbash, Ehsan & Yazdanpanah, Mohammad Javad & Asadpour, Masoud, 2019. "Polarization in cooperative networks through optimal placement of informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    14. Valeria Burdea & Jonathan Woon, 2023. "Getting it Right: Communication, Voting, and Collective Truth Finding," Rationality and Competition Discussion Paper Series 443, CRC TRR 190 Rationality and Competition.
    15. Mavrodiev, Pavlin & Schweitzer, Frank, 2021. "The ambigous role of social influence on the wisdom of crowds: An analytic approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    16. Joshua Aaron Becker & Douglas Guilbeault & Edward Bishop Smith, 2022. "The Crowd Classification Problem: Social Dynamics of Binary-Choice Accuracy," Management Science, INFORMS, vol. 68(5), pages 3949-3965, May.
    17. Muye Chen & Michel Regenwetter & Clintin P. Davis-Stober, 2021. "Collective Choice May Tell Nothing About Anyone’s Individual Preferences," Decision Analysis, INFORMS, vol. 18(1), pages 1-24, March.
    18. Yuqing Kong, 2021. "Information Elicitation Meets Clustering," Papers 2110.00952, arXiv.org.
    19. J. Aislinn Bohren & Daniel N. Hauser, 2023. "Behavioral Foundations of Model Misspecification," PIER Working Paper Archive 23-007, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    20. Mariam Maki Sy & Charles Figuières & Hélène Rey-Valette & Richard B. Howarth & Rutger Wit, 2024. "Valuation of ecosystem services and social choice: the impact of deliberation in the context of two different aggregation rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 63(3), pages 619-640, November.
    21. Shane Greenstein & Grace Gu & Feng Zhu, 2021. "Ideology and Composition Among an Online Crowd: Evidence from Wikipedians," Management Science, INFORMS, vol. 67(5), pages 3067-3086, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:33:y:2024:i:1:d:10.1007_s10726-023-09855-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.