IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v23y2024i2d10.1007_s10700-024-09420-2.html
   My bibliography  Save this article

A framework of distributionally robust possibilistic optimization

Author

Listed:
  • Romain Guillaume

    (Université de Toulouse-IRIT Toulouse)

  • Adam Kasperski

    (Wrocław University of Science and Technology)

  • Paweł Zieliński

    (Wrocław University of Science and Technology)

Abstract

In this paper, an optimization problem with uncertain constraint coefficients is considered. Possibility theory is used to model the uncertainty. Namely, a joint possibility distribution in constraint coefficient realizations, called scenarios, is specified. This possibility distribution induces a necessity measure in a scenario set, which in turn describes an ambiguity set of probability distributions in a scenario set. The distributionally robust approach is then used to convert the imprecise constraints into deterministic equivalents. Namely, the left-hand side of an imprecise constraint is evaluated by using a risk measure with respect to the worst probability distribution that can occur. In this paper, the Conditional Value at Risk is used as the risk measure, which generalizes the strict robust, and expected value approaches commonly used in literature. A general framework for solving such a class of problems is described. Some cases which can be solved in polynomial time are identified.

Suggested Citation

  • Romain Guillaume & Adam Kasperski & Paweł Zieliński, 2024. "A framework of distributionally robust possibilistic optimization," Fuzzy Optimization and Decision Making, Springer, vol. 23(2), pages 253-278, June.
  • Handle: RePEc:spr:fuzodm:v:23:y:2024:i:2:d:10.1007_s10700-024-09420-2
    DOI: 10.1007/s10700-024-09420-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-024-09420-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-024-09420-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dubois, Didier, 2006. "Possibility theory and statistical reasoning," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 47-69, November.
    2. Baudrit, C. & Dubois, D., 2006. "Practical representations of incomplete probabilistic knowledge," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 86-108, November.
    3. de Klerk, Etienne & Laurent, Monique, 2019. "A survey of semidefinite programming approaches to the generalized problem of moments and their error analysis," Other publications TiSEM d956492f-3e25-4dda-a5e2-e, Tilburg University, School of Economics and Management.
    4. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ripamonti, G. & Lonati, G. & Baraldi, P. & Cadini, F. & Zio, E., 2013. "Uncertainty propagation in a model for the estimation of the ground level concentration of dioxin/furans emitted from a waste gasification plant," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 98-105.
    2. Nicola Pedroni & Enrico Zio, 2013. "Uncertainty Analysis in Fault Tree Models with Dependent Basic Events," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1146-1173, June.
    3. Luciano Stefanini & Maria Letizia Guerra, 2016. "On Possibilistic Representations of Fuzzy Intervals," Working Papers 1602, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2016.
    4. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A critical discussion and practical recommendations on some issues relevant to the non-probabilistic treatment of uncertainty in engineering risk assessment," Post-Print hal-01652230, HAL.
    5. Montes, Ignacio & Miranda, Enrique & Montes, Susana, 2014. "Stochastic dominance with imprecise information," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 868-886.
    6. Coppi, Renato & Gil, Maria A. & Kiers, Henk A.L., 2006. "The fuzzy approach to statistical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 1-14, November.
    7. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A Critical Discussion and Practical Recommendations on Some Issues Relevant to the Nonprobabilistic Treatment of Uncertainty in Engineering Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1315-1340, July.
    8. Aven, T., 2011. "Interpretations of alternative uncertainty representations in a reliability and risk analysis context," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 353-360.
    9. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    10. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Robust optimization on redundancy allocation problems in multi-state and continuous-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    11. Kirschner, Felix & de Klerk, Etienne, 2022. "Convergence rates of RLT and Lasserre-type hierarchies for the generalized moment problem over the simplex and the sphere," Other publications TiSEM 3c225e7f-ae4a-4c75-8921-4, Tilburg University, School of Economics and Management.
    12. Chassein, André & Goerigk, Marc, 2018. "Compromise solutions for robust combinatorial optimization with variable-sized uncertainty," European Journal of Operational Research, Elsevier, vol. 269(2), pages 544-555.
    13. Li, Yanfu & Zio, Enrico, 2012. "Uncertainty analysis of the adequacy assessment model of a distributed generation system," Renewable Energy, Elsevier, vol. 41(C), pages 235-244.
    14. Enrico Bartolini & Dominik Goeke & Michael Schneider & Mengdie Ye, 2021. "The Robust Traveling Salesman Problem with Time Windows Under Knapsack-Constrained Travel Time Uncertainty," Transportation Science, INFORMS, vol. 55(2), pages 371-394, March.
    15. Sara Mattia & Michael Poss, 2018. "A comparison of different routing schemes for the robust network loading problem: polyhedral results and computation," Computational Optimization and Applications, Springer, vol. 69(3), pages 753-800, April.
    16. Viet Anh Nguyen & Daniel Kuhn & Peyman Mohajerin Esfahani, 2018. "Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator," Papers 1805.07194, arXiv.org.
    17. Taozeng Zhu & Jingui Xie & Melvyn Sim, 2022. "Joint Estimation and Robustness Optimization," Management Science, INFORMS, vol. 68(3), pages 1659-1677, March.
    18. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    19. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    20. Feng, Jie & Ran, Lun & Wang, Zhiyuan & Zhang, Mengling, 2024. "Optimal energy scheduling of virtual power plant integrating electric vehicles and energy storage systems under uncertainty," Energy, Elsevier, vol. 309(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:23:y:2024:i:2:d:10.1007_s10700-024-09420-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.