IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v20y2021i1d10.1007_s10700-020-09334-9.html
   My bibliography  Save this article

A random intuitionistic fuzzy factor analysis model for complex multi-attribute large group decision-making in dynamic environments

Author

Listed:
  • Xiaohong Chen

    (Central South University
    Hunan University of Technology and Business
    Hunan University of Technology and Business)

  • Mengjing Wu

    (Central South University)

  • Chunqiao Tan

    (Nanjing Audit University)

  • Tao Zhang

    (Loughborough University London)

Abstract

The challenge of complex multi-attribute large group decision-making (CMALGDM) is reflected from three perspectives: interrelated attributes, large group decision makers (DMs) and dynamic decision environments. However, there are few decision techniques that can address the three perspectives simultaneously. This paper proposes a random intuitionistic fuzzy factor analysis model, aiming to address the challenge of CMALGDM from the three perspectives. The proposed method effectively reduces the dimensionality of the original data and takes into account the underlying random environmental factors which may affect the performances of alternatives. The development of this method follows three steps. First, the random intuitionistic fuzzy variables are developed to deal with a hybrid uncertain situation where fuzziness and randomness co-exist. Second, a novel factor analysis model for random intuitionistic fuzzy variables is proposed. This model uses specific mappings or functions to define the way in which evaluations are affected by the dynamic environment vector through data learning or prior distributions. Third, multiple correlated attribute variables and DM variables are transformed into fewer independent factors by a two-step procedure using the proposed model. In addition, the objective classifications and weights for attributes and DMs are obtained from the results of orthogonal rotated factor loading. An illustrative case and detailed comparisons of decision results in different environmental conditions are demonstrated to test the feasibility and validity of the proposed method.

Suggested Citation

  • Xiaohong Chen & Mengjing Wu & Chunqiao Tan & Tao Zhang, 2021. "A random intuitionistic fuzzy factor analysis model for complex multi-attribute large group decision-making in dynamic environments," Fuzzy Optimization and Decision Making, Springer, vol. 20(1), pages 101-127, March.
  • Handle: RePEc:spr:fuzodm:v:20:y:2021:i:1:d:10.1007_s10700-020-09334-9
    DOI: 10.1007/s10700-020-09334-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-020-09334-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-020-09334-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi Pei, 2017. "Multi-attribute decision making based on a novel IF point operator," Fuzzy Optimization and Decision Making, Springer, vol. 16(4), pages 505-524, December.
    2. Xunjie Gou & Zeshui Xu, 2017. "Exponential operations for intuitionistic fuzzy numbers and interval numbers in multi-attribute decision making," Fuzzy Optimization and Decision Making, Springer, vol. 16(2), pages 183-204, June.
    3. Li, Jun & Xu, Jiuping, 2009. "A novel portfolio selection model in a hybrid uncertain environment," Omega, Elsevier, vol. 37(2), pages 439-449, April.
    4. Liu, Bingsheng & Shen, Yinghua & Zhang, Wei & Chen, Xiaohong & Wang, Xueqing, 2015. "An interval-valued intuitionistic fuzzy principal component analysis model-based method for complex multi-attribute large-group decision-making," European Journal of Operational Research, Elsevier, vol. 245(1), pages 209-225.
    5. Xiaohong Chen & Hui Li & Chunqiao Tan, 2019. "An intuitionstic fuzzy factorial analysis model for multi-attribute decision-making under random environment," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(1), pages 81-100, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Mohsen Mirbagheri & Ata Ollah Rafiei Atani & Mohammadreza Parsanejad, 2023. "The Effect of Collective Decision-Making on Productivity: A Structural Equation Modeling," SAGE Open, , vol. 13(4), pages 21582440231, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    2. Zhang-peng Tian & Hong-yu Zhang & Jing Wang & Jian-qiang Wang & Xiao-hong Chen, 2016. "Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(15), pages 3598-3608, November.
    3. Sehgal, Ruchika & Sharma, Amita & Mansini, Renata, 2023. "Worst-case analysis of Omega-VaR ratio optimization model," Omega, Elsevier, vol. 114(C).
    4. Hasuike, Takashi & Ishii, Hiroaki, 2009. "On flexible product-mix decision problems under randomness and fuzziness," Omega, Elsevier, vol. 37(4), pages 770-787, August.
    5. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2017. "Fuzzy Logic-based Portfolio Selection with Particle Filtering and Anomaly Detection," CIRJE F-Series CIRJE-F-1037, CIRJE, Faculty of Economics, University of Tokyo.
    6. Liu, Bingsheng & Zhou, Qi & Ding, Ru-Xi & Palomares, Iván & Herrera, Francisco, 2019. "Large-scale group decision making model based on social network analysis: Trust relationship-based conflict detection and elimination," European Journal of Operational Research, Elsevier, vol. 275(2), pages 737-754.
    7. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2017. "Fuzzy Logic-based Portfolio Selection with Particle Filtering and Anomaly Detection (Subsequently published in "Knowledge-Based Systems")," CARF F-Series CARF-F-405, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    8. Liu, Hu-Chen & Li, Zhaojun & Zhang, Jian-Qing & You, Xiao-Yue, 2018. "A large group decision making approach for dependence assessment in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 135-144.
    9. Kreye, M.E. & Goh, Y.M. & Newnes, L.B. & Goodwin, P., 2012. "Approaches to displaying information to assist decisions under uncertainty," Omega, Elsevier, vol. 40(6), pages 682-692.
    10. Junliang Du & Sifeng Liu & Yong Liu & Liangyan Tao, 2023. "Multi-criteria Large-Scale Group Decision-Making in Linguistic Contexts: A Perspective of Conflict Analysis and Resolution," Group Decision and Negotiation, Springer, vol. 32(1), pages 177-207, February.
    11. Xiaohong Chen & Weiwei Zhang & Xuanhua Xu & Wenzhi Cao, 2022. "Managing Group Confidence and Consensus in Intuitionistic Fuzzy Large Group Decision-Making Based on Social Media Data Mining," Group Decision and Negotiation, Springer, vol. 31(5), pages 995-1023, October.
    12. Qifeng Wan & Xuanhua Xu & Xiaohong Chen & Jun Zhuang, 2020. "A Two-Stage Optimization Model for Large-Scale Group Decision-Making in Disaster Management: Minimizing Group Conflict and Maximizing Individual Satisfaction," Group Decision and Negotiation, Springer, vol. 29(5), pages 901-921, October.
    13. Jiuping Xu & Xiaoyang Zhou & Steven Li, 2011. "A Class of Chance Constrained Multi-objective Portfolio Selection Model Under Fuzzy Random Environment," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 530-552, September.
    14. Jianjian Wang & Feng He & Xin Shi, 2019. "Numerical solution of a general interval quadratic programming model for portfolio selection," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    15. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    16. Yong Liu & Ting Zhou & Wei-xue Diao & Jinhong Yi, 2022. "A multivariate minimum cost consensus approach for two-level group decision making," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 839-861, September.
    17. Chenxi Zhang & Meng Zhao & Lichao Zhao & Qinfei Yuan, 2021. "A Consensus Model for Large-Scale Group Decision-Making Based on the Trust Relationship Considering Leadership Behaviors and Non-cooperative Behaviors," Group Decision and Negotiation, Springer, vol. 30(3), pages 553-586, June.
    18. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2017. "Robust Technical Trading with Fuzzy Knowledge-based Systems," CIRJE F-Series CIRJE-F-1053, CIRJE, Faculty of Economics, University of Tokyo.
    19. Yanmin Liu & Hua Zhao & Zeshui Xu, 2018. "The chain and substitution rules of interval-valued intuitionistic fuzzy calculus," Fuzzy Optimization and Decision Making, Springer, vol. 17(3), pages 265-285, September.
    20. Tang, Ming & Liao, Huchang, 2021. "From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey," Omega, Elsevier, vol. 100(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:20:y:2021:i:1:d:10.1007_s10700-020-09334-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.