IDEAS home Printed from https://ideas.repec.org/a/spr/fuzinf/v3y2011i3d10.1007_s12543-011-0084-7.html
   My bibliography  Save this article

Application of fuzzy time series in prediction of time between failures & faults in software reliability assessment

Author

Listed:
  • S. Chatterjee

    (Indian School of Mines)

  • S. Nigam

    (Indian School of Mines)

  • J. B. Singh

    (Indian School of Mines)

  • L. N. Upadhyaya

    (Indian School of Mines)

Abstract

Since last seventies, various software reliability growth models (SRGMs) have been developed to estimate different measures related to quality of software like: number of remaining faults, software failure rate, reliability, cost, release time, etc. Most of the exiting SRGMs are probabilistic. These models have been developed based on various assumptions. The entire software development process is performed by human being. Also, a software can be executed in different environments. As human behavior is fuzzy and the environment is changing, the concept of fuzzy set theory is applicable in developing software reliability models. In this paper, two fuzzy time series based software reliability models have been proposed. The first one predicts the time between failures (TBFs) of software and the second one predicts the number of errors present in software. Both the models have been developed considering the software failure data as linguistic variable. Usefulness of the models has been demonstrated using real failure data.

Suggested Citation

  • S. Chatterjee & S. Nigam & J. B. Singh & L. N. Upadhyaya, 2011. "Application of fuzzy time series in prediction of time between failures & faults in software reliability assessment," Fuzzy Information and Engineering, Springer, vol. 3(3), pages 293-309, September.
  • Handle: RePEc:spr:fuzinf:v:3:y:2011:i:3:d:10.1007_s12543-011-0084-7
    DOI: 10.1007/s12543-011-0084-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12543-011-0084-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12543-011-0084-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoang Pham, 2006. "System Software Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-295-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Shenghan & Hu, Chen & Qiao, Xiaoduo & Chang, Wenbing, 2016. "A forecasting method for Chinese civil planes attendance rate based on vague sets," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 518-526.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liviu Adrian COTFAS & Andreea DIOSTEANU, 2010. "Software Reliability in Semantic Web Service Composition Applications," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 14(4), pages 48-56.
    2. Kwang Yoon Song & In Hong Chang & Hoang Pham, 2019. "A Testing Coverage Model Based on NHPP Software Reliability Considering the Software Operating Environment and the Sensitivity Analysis," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    3. Subhashis Chatterjee & Shobhit Nigam & Jeetendra Bahadur Singh & Lakshmi Narayan Upadhyaya, 2012. "Effect of change point and imperfect debugging in software reliability and its optimal release policy," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(5), pages 539-551, March.
    4. Wang, Jinyong & Wu, Zhibo, 2016. "Study of the nonlinear imperfect software debugging model," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 180-192.
    5. Subhashis Chatterjee & Jeetendra B. Singh & Arunava Roy, 2015. "A structure-based software reliability allocation using fuzzy analytic hierarchy process," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 513-525, February.
    6. Gaurav Mishra & P. K. Kapur & Anu G. Aggarwal, 2023. "A generalized multi-upgradation SRGM considering uncertainty of random field operating environments," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 328-336, March.
    7. Bistouni, Fathollah & Jahanshahi, Mohsen, 2017. "Remove and contraction: A novel method for calculating the reliability of Ethernet ring mesh networks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 362-375.
    8. Utkin, Lev V. & Coolen, Frank P.A., 2018. "A robust weighted SVR-based software reliability growth model," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 93-101.
    9. Da Hye Lee & In Hong Chang & Hoang Pham, 2020. "Software Reliability Model with Dependent Failures and SPRT," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    10. Anshul Tickoo & P. K. Kapur & A. K. Shrivastava & Sunil K. Khatri, 2016. "Testing effort based modeling to determine optimal release and patching time of software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 427-434, December.
    11. Hoang Pham, 2020. "Estimating the COVID-19 Death Toll by Considering the Time-Dependent Effects of Various Pandemic Restrictions," Mathematics, MDPI, vol. 8(9), pages 1-12, September.
    12. Hoang Pham, 2019. "A New Criterion for Model Selection," Mathematics, MDPI, vol. 7(12), pages 1-12, December.
    13. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2019. "Coherent quality management for big data systems: a dynamic approach for stochastic time consistency," Annals of Operations Research, Springer, vol. 277(1), pages 3-32, June.
    14. Tahere Yaghoobi & Man-Fai Leung, 2023. "Modeling Software Reliability with Learning and Fatigue," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
    15. Awat Ghomghaleh & Reza Khaloukakaie & Mohammad Ataei & Abbas Barabadi & Ali Nouri Qarahasanlou & Omeid Rahmani & Amin Beiranvand Pour, 2020. "Prediction of remaining useful life (RUL) of Komatsu excavator under reliability analysis in the Weibull-frailty model," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
    16. Triet Pham & Hoang Pham, 2019. "A generalized software reliability model with stochastic fault-detection rate," Annals of Operations Research, Springer, vol. 277(1), pages 83-93, June.
    17. Dahye Lee & Inhong Chang & Hoang Pham, 2023. "Study of a New Software Reliability Growth Model under Uncertain Operating Environments and Dependent Failures," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
    18. Yuka Minamino & Yusuke Makita & Shinji Inoue & Shigeru Yamada, 2022. "Efficiency Evaluation of Software Faults Correction Based on Queuing Simulation," Mathematics, MDPI, vol. 10(9), pages 1-9, April.
    19. Hoang Pham, 2020. "On Estimating the Number of Deaths Related to Covid-19," Mathematics, MDPI, vol. 8(5), pages 1-9, April.
    20. Harishchandra Kodialbail & Manjunatha Kammasandra M., 2010. "Statistical Inference on Software Reliability Assuming Exponential Fault Correction Time," Stochastics and Quality Control, De Gruyter, vol. 25(2), pages 269-279, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzinf:v:3:y:2011:i:3:d:10.1007_s12543-011-0084-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.