IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1438-d801207.html
   My bibliography  Save this article

Efficiency Evaluation of Software Faults Correction Based on Queuing Simulation

Author

Listed:
  • Yuka Minamino

    (Faculty of Engineering, Tottori University, 4-101, Minami, Koyama-cho, Tottori-shi 680-8552, Tottori, Japan)

  • Yusuke Makita

    (Faculty of Engineering, Tottori University, 4-101, Minami, Koyama-cho, Tottori-shi 680-8552, Tottori, Japan)

  • Shinji Inoue

    (Faculty of Informatics, Kansai University, 2-1-1, Ryozenji-cho, Takatsuki-shi 569-1095, Osaka, Japan)

  • Shigeru Yamada

    (Faculty of Engineering, Tottori University, 4-101, Minami, Koyama-cho, Tottori-shi 680-8552, Tottori, Japan)

Abstract

Fault-counting data are collected in the testing process of software development. However, the data are not used for evaluating the efficiency of fault correction activities because the information on the fault detection and correction times of each fault are not recorded in the fault-counting data. Furthermore, it is difficult to collect new data on the detection time of each fault to realize efficiency evaluation for fault correction activities from the collected fault-counting data due to the cost of personnel and data collection. In this paper, we apply the thinning method, using intensity functions of the delayed S-shaped and inflection S-shaped software reliability growth models (SRGMs) to generate sample data of the fault detection time from the fault-counting data. Additionally, we perform simulations based on the infinite server queuing model, using the generated sample data of the fault detection time to visualize the efficiency of fault correction activities.

Suggested Citation

  • Yuka Minamino & Yusuke Makita & Shinji Inoue & Shigeru Yamada, 2022. "Efficiency Evaluation of Software Faults Correction Based on Queuing Simulation," Mathematics, MDPI, vol. 10(9), pages 1-9, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1438-:d:801207
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1438/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1438/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hoang Pham, 2006. "System Software Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-295-9, December.
    2. Mengmeng Zhu & Hoang Pham, 2022. "Software Reliability Modeling and Methods: A State of the Art Review," Springer Series in Reliability Engineering, in: Anu G. Aggarwal & Abhishek Tandon & Hoang Pham (ed.), Optimization Models in Software Reliability, pages 1-29, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gurami Tsitsiashvili & Marina Osipova, 2023. "Asymptotic Relations in Applied Models of Inhomogeneous Poisson Point Flows," Mathematics, MDPI, vol. 11(8), pages 1-10, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liviu Adrian COTFAS & Andreea DIOSTEANU, 2010. "Software Reliability in Semantic Web Service Composition Applications," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 14(4), pages 48-56.
    2. Kwang Yoon Song & In Hong Chang & Hoang Pham, 2019. "A Testing Coverage Model Based on NHPP Software Reliability Considering the Software Operating Environment and the Sensitivity Analysis," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    3. Subhashis Chatterjee & Shobhit Nigam & Jeetendra Bahadur Singh & Lakshmi Narayan Upadhyaya, 2012. "Effect of change point and imperfect debugging in software reliability and its optimal release policy," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(5), pages 539-551, March.
    4. Wang, Jinyong & Wu, Zhibo, 2016. "Study of the nonlinear imperfect software debugging model," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 180-192.
    5. Subhashis Chatterjee & Jeetendra B. Singh & Arunava Roy, 2015. "A structure-based software reliability allocation using fuzzy analytic hierarchy process," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 513-525, February.
    6. Gaurav Mishra & P. K. Kapur & Anu G. Aggarwal, 2023. "A generalized multi-upgradation SRGM considering uncertainty of random field operating environments," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 328-336, March.
    7. Bistouni, Fathollah & Jahanshahi, Mohsen, 2017. "Remove and contraction: A novel method for calculating the reliability of Ethernet ring mesh networks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 362-375.
    8. Utkin, Lev V. & Coolen, Frank P.A., 2018. "A robust weighted SVR-based software reliability growth model," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 93-101.
    9. Da Hye Lee & In Hong Chang & Hoang Pham, 2020. "Software Reliability Model with Dependent Failures and SPRT," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    10. Anshul Tickoo & P. K. Kapur & A. K. Shrivastava & Sunil K. Khatri, 2016. "Testing effort based modeling to determine optimal release and patching time of software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 427-434, December.
    11. Hoang Pham, 2020. "Estimating the COVID-19 Death Toll by Considering the Time-Dependent Effects of Various Pandemic Restrictions," Mathematics, MDPI, vol. 8(9), pages 1-12, September.
    12. Hoang Pham, 2019. "A New Criterion for Model Selection," Mathematics, MDPI, vol. 7(12), pages 1-12, December.
    13. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2019. "Coherent quality management for big data systems: a dynamic approach for stochastic time consistency," Annals of Operations Research, Springer, vol. 277(1), pages 3-32, June.
    14. Tahere Yaghoobi & Man-Fai Leung, 2023. "Modeling Software Reliability with Learning and Fatigue," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
    15. Awat Ghomghaleh & Reza Khaloukakaie & Mohammad Ataei & Abbas Barabadi & Ali Nouri Qarahasanlou & Omeid Rahmani & Amin Beiranvand Pour, 2020. "Prediction of remaining useful life (RUL) of Komatsu excavator under reliability analysis in the Weibull-frailty model," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
    16. S. Chatterjee & S. Nigam & J. B. Singh & L. N. Upadhyaya, 2011. "Application of fuzzy time series in prediction of time between failures & faults in software reliability assessment," Fuzzy Information and Engineering, Springer, vol. 3(3), pages 293-309, September.
    17. Triet Pham & Hoang Pham, 2019. "A generalized software reliability model with stochastic fault-detection rate," Annals of Operations Research, Springer, vol. 277(1), pages 83-93, June.
    18. Dahye Lee & Inhong Chang & Hoang Pham, 2023. "Study of a New Software Reliability Growth Model under Uncertain Operating Environments and Dependent Failures," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
    19. Hoang Pham, 2020. "On Estimating the Number of Deaths Related to Covid-19," Mathematics, MDPI, vol. 8(5), pages 1-9, April.
    20. Harishchandra Kodialbail & Manjunatha Kammasandra M., 2010. "Statistical Inference on Software Reliability Assuming Exponential Fault Correction Time," Stochastics and Quality Control, De Gruyter, vol. 25(2), pages 269-279, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1438-:d:801207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.