IDEAS home Printed from https://ideas.repec.org/a/spr/fuzinf/v3y2011i1d10.1007_s12543-011-0062-0.html
   My bibliography  Save this article

Methods for solving fuzzy assignment problems and fuzzy travelling salesman problems with different membership functions

Author

Listed:
  • Amit Kumar

    (Thapar University)

  • Anila Gupta

    (Thapar University)

Abstract

Mukherjee and Basu proposed a new method for solving fuzzy assignment problems. In this paper, some fuzzy assignment problems and fuzzy travelling salesman problems are chosen which cannot be solved by using the fore-mentioned method. Two new methods are proposed for solving such type of fuzzy assignment problems and fuzzy travelling salesman problems. The fuzzy assignment problems and fuzzy travelling salesman problems which can be solved by using the existing method, can also be solved by using the proposed methods. But, there exist certain fuzzy assignment problems and fuzzy travelling salesman problems which can be solved only by using the proposed methods. To illustrate the proposed methods, a fuzzy assignment problem and a fuzzy travelling salesman problem is solved. The proposed methods are easy to understand and apply to find optimal solution of fuzzy assignment problems and fuzzy travelling salesman problems occurring in real life situations.

Suggested Citation

  • Amit Kumar & Anila Gupta, 2011. "Methods for solving fuzzy assignment problems and fuzzy travelling salesman problems with different membership functions," Fuzzy Information and Engineering, Springer, vol. 3(1), pages 3-21, March.
  • Handle: RePEc:spr:fuzinf:v:3:y:2011:i:1:d:10.1007_s12543-011-0062-0
    DOI: 10.1007/s12543-011-0062-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12543-011-0062-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12543-011-0062-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sakawa, Masatoshi & Nishizaki, Ichiro & Uemura, Yoshio, 2001. "Interactive fuzzy programming for two-level linear and linear fractional production and assignment problems: A case study," European Journal of Operational Research, Elsevier, vol. 135(1), pages 142-157, November.
    2. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boris Pérez-Cañedo & José Luis Verdegay & Eduardo René Concepción-Morales & Alejandro Rosete, 2020. "Lexicographic Methods for Fuzzy Linear Programming," Mathematics, MDPI, vol. 8(9), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    2. Weiqiang Shen & Chuanlin Zhang & Xiaona Zhang & Jinglun Shi, 2019. "A fully distributed deployment algorithm for underwater strong k-barrier coverage using mobile sensors," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    3. András Frank, 2005. "On Kuhn's Hungarian Method—A tribute from Hungary," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 2-5, February.
    4. Nisse, Nicolas & Salch, Alexandre & Weber, Valentin, 2023. "Recovery of disrupted airline operations using k-maximum matching in graphs," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1061-1072.
    5. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    6. Cao, Dong & Chen, Mingyuan, 2006. "Capacitated plant selection in a decentralized manufacturing environment: A bilevel optimization approach," European Journal of Operational Research, Elsevier, vol. 169(1), pages 97-110, February.
    7. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.
    8. Omar Zatarain & Jesse Yoe Rumbo-Morales & Silvia Ramos-Cabral & Gerardo Ortíz-Torres & Felipe d. J. Sorcia-Vázquez & Iván Guillén-Escamilla & Juan Carlos Mixteco-Sánchez, 2023. "A Method for Perception and Assessment of Semantic Textual Similarities in English," Mathematics, MDPI, vol. 11(12), pages 1-20, June.
    9. Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
    10. Winker, Peter, 2023. "Visualizing Topic Uncertainty in Topic Modelling," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277584, Verein für Socialpolitik / German Economic Association.
    11. Ahlatcioglu, Mehmet & Tiryaki, Fatma, 2007. "Interactive fuzzy programming for decentralized two-level linear fractional programming (DTLLFP) problems," Omega, Elsevier, vol. 35(4), pages 432-450, August.
    12. Tran Hoang Hai, 2020. "Estimation of volatility causality in structural autoregressions with heteroskedasticity using independent component analysis," Statistical Papers, Springer, vol. 61(1), pages 1-16, February.
    13. P. Senthil Kumar & R. Jahir Hussain, 2016. "A Simple Method for Solving Fully Intuitionistic Fuzzy Real Life Assignment Problem," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 7(2), pages 39-61, April.
    14. Mojtaba Borza & Azmin Sham Rambely & Mansour Saraj, 2014. "Two-Level Linear Programming Problems with Two Decision-Makers at the Upper Level: An Interactive Fuzzy Approach," Modern Applied Science, Canadian Center of Science and Education, vol. 8(4), pages 211-211, August.
    15. Caplin, Andrew & Leahy, John, 2020. "Comparative statics in markets for indivisible goods," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 80-94.
    16. Biró, Péter & Gudmundsson, Jens, 2021. "Complexity of finding Pareto-efficient allocations of highest welfare," European Journal of Operational Research, Elsevier, vol. 291(2), pages 614-628.
    17. Sallam, Gamal & Baroudi, Uthman, 2020. "A two-stage framework for fair autonomous robot deployment using virtual forces," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 35-50.
    18. Péter Biró & Flip Klijn & Xenia Klimentova & Ana Viana, 2021. "Shapley-Scarf Housing Markets: Respecting Improvement, Integer Programming, and Kidney Exchange," Working Papers 1235, Barcelona School of Economics.
    19. Michal Brylinski, 2014. "eMatchSite: Sequence Order-Independent Structure Alignments of Ligand Binding Pockets in Protein Models," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-15, September.
    20. Chiwei Yan & Helin Zhu & Nikita Korolko & Dawn Woodard, 2020. "Dynamic pricing and matching in ride‐hailing platforms," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 705-724, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzinf:v:3:y:2011:i:1:d:10.1007_s12543-011-0062-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.