IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v36y2024i2d10.1007_s10696-023-09497-8.html
   My bibliography  Save this article

Machine-based identification system via optical character recognition

Author

Listed:
  • Mohammad Shahin

    (The University of Texas at San Antonio)

  • F. Frank Chen

    (The University of Texas at San Antonio)

  • Ali Hosseinzadeh

    (The University of Texas at San Antonio)

Abstract

In the past, information technology was frequently considered a waste from Lean manufacturing perspective. Though the business landscape evolves and competition from low-cost nations grows, new models must be created that provides a competitive edge by combining the Lean paradigm with Industry 4.0 technical advancements. This paper aims to contribute to this field by assessing the supporting function of a Machine-based Identification system (MBID) via Optical Character Recognition (OCR) in Lean manufacturing paradigm. The objective of this paper is to also explore the use of MBID to enable a competitive manufacturing process in a Lean 4.0 environment. Furthermore, a MBID via OCR model is proposed to extract the printed identification number of packages from images captured by a fixed camera in an industrial environment. The method considers different digital image processing techniques to deal with the significant lighting and printing variation observed, followed by a segmentation process that extracts and aligns the characters. The proposed system utilized an approach to treating lighting variations in images, covering low contrast, distorted, darker, and brighter images. Experiments were carried out on a data set consisting of 200 images and achieved an overall detection accuracy of 95% with a very low Character Error Rate (CER) value of 0.0041, clearly supporting the validity and effectiveness of the proposed method.

Suggested Citation

  • Mohammad Shahin & F. Frank Chen & Ali Hosseinzadeh, 2024. "Machine-based identification system via optical character recognition," Flexible Services and Manufacturing Journal, Springer, vol. 36(2), pages 453-480, June.
  • Handle: RePEc:spr:flsman:v:36:y:2024:i:2:d:10.1007_s10696-023-09497-8
    DOI: 10.1007/s10696-023-09497-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-023-09497-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-023-09497-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Hegghammer, 2022. "OCR with Tesseract, Amazon Textract, and Google Document AI: a benchmarking experiment," Journal of Computational Social Science, Springer, vol. 5(1), pages 861-882, May.
    2. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hejn Nielsen, Erland, 2013. "Small sample uncertainty aspects in relation to bullwhip effect measurement," International Journal of Production Economics, Elsevier, vol. 146(2), pages 543-549.
    2. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio, 2019. "An empirical investigation on the antecedents of the bullwhip effect: Evidence from the spare parts industry," International Journal of Production Economics, Elsevier, vol. 209(C), pages 121-133.
    3. Gérard P. Cachon & Taylor Randall & Glen M. Schmidt, 2007. "In Search of the Bullwhip Effect," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 457-479, April.
    4. Wang, Zhaodong & Wang, Xin & Ouyang, Yanfeng, 2015. "Bounded growth of the bullwhip effect under a class of nonlinear ordering policies," European Journal of Operational Research, Elsevier, vol. 247(1), pages 72-82.
    5. Vanpoucke, E. & Boyer, K. & Vereecke, A., 2009. "Supply chain information flow strategies: an empirical taxonomy," Vlerick Leuven Gent Management School Working Paper Series 2009-03, Vlerick Leuven Gent Management School.
    6. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    7. Young-Kyou Ha & Su-Han Woo, 2022. "Transportation Infrastructure or Economic Power? Development of the Automobile Industry in the United States," Sustainability, MDPI, vol. 14(3), pages 1-11, January.
    8. Roberto Dominguez & Salvatore Cannella & Borja Ponte & Jose M. Framinan, 2022. "Information sharing in decentralised supply chains with partial collaboration," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 263-292, June.
    9. Yongchang Wei & Fangyu Chen & Feng Xiong, 2018. "Dynamic Complexities in a Supply Chain System with Lateral Transshipments," Complexity, Hindawi, vol. 2018, pages 1-15, June.
    10. Wallace J. Hopp & David Simchi-Levi, 2021. "Management Science : The Legacy of the Past and Challenge of the Future," Management Science, INFORMS, vol. 67(9), pages 5306-5316, September.
    11. Ananth V. Iyer & Apurva Jain, 2003. "The Logistics Impact of a Mixture of Order-Streams in a Manufacturer-Retailer System," Management Science, INFORMS, vol. 49(7), pages 890-906, July.
    12. Riemer, Kai, 2008. "E-Commerce und Supply-Chain-Management: Maßnahmen und Instrumente zur Verbesserung der Koordination in Lieferketten," Working Papers 53, University of Münster, Competence Center Internet Economy and Hybrid Systems, European Research Center for Information Systems (ERCIS).
    13. Li Chen & Hau L. Lee, 2012. "Bullwhip Effect Measurement and Its Implications," Operations Research, INFORMS, vol. 60(4), pages 771-784, August.
    14. Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
    15. Kamath, Narasimha B. & Roy, Rahul, 2007. "Capacity augmentation of a supply chain for a short lifecycle product: A system dynamics framework," European Journal of Operational Research, Elsevier, vol. 179(2), pages 334-351, June.
    16. Carole Camisullis & Vincent Giard & Gisele Mendy-Bilek, 2010. "The information to share in upstream supply chains dedicated to mass production of customized products for allowing a decentralized management," Working Papers hal-00876993, HAL.
    17. Sajjad Aslani Khiavi & Hamid Khaloozadeh & Fahimeh Soltanian, 2021. "Suboptimal sliding manifold For nonlinear supply chain with time delay," Journal of Combinatorial Optimization, Springer, vol. 42(1), pages 151-173, July.
    18. Danese, Pamela & Kalchschmidt, Matteo, 2011. "The role of the forecasting process in improving forecast accuracy and operational performance," International Journal of Production Economics, Elsevier, vol. 131(1), pages 204-214, May.
    19. Sheu, Jiuh-Biing, 2005. "A multi-layer demand-responsive logistics control methodology for alleviating the bullwhip effect of supply chains," European Journal of Operational Research, Elsevier, vol. 161(3), pages 797-811, March.
    20. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:36:y:2024:i:2:d:10.1007_s10696-023-09497-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.