IDEAS home Printed from https://ideas.repec.org/a/spr/eurjtl/v5y2016i4d10.1007_s13676-015-0086-4.html
   My bibliography  Save this article

Sensor placement with time-to-detection guarantees

Author

Listed:
  • Saif Eddin Jabari

    (New York University Abu Dhabi)

  • Laura Wynter

    (IBM Research Collaboratory Singapore)

Abstract

We present a novel and effective method for determining the placement of sensors so as to be able to satisfy probabilistic constraints on the time-to-detection of an incident. Indeed, with the wealth of real-time traffic data available today, an important new goal of intelligent traffic management systems is incident detection with time-to-detection guarantees, in particular on expressways with large distances between sensors. This goal drives investment decisions in new sensor deployment, hence making the topic a pressing need for traffic management. The method we provide makes use of a probabilistic formulation of traffic behavior and incident localization to determine the minimum spacing of sensors needed to achieve the time-to-detection goal with a specified probability.

Suggested Citation

  • Saif Eddin Jabari & Laura Wynter, 2016. "Sensor placement with time-to-detection guarantees," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 415-433, December.
  • Handle: RePEc:spr:eurjtl:v:5:y:2016:i:4:d:10.1007_s13676-015-0086-4
    DOI: 10.1007/s13676-015-0086-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13676-015-0086-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13676-015-0086-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahn, Soyoung & Cassidy, Michael J. & Laval, Jorge, 2004. "Verification of a simplified car-following theory," Transportation Research Part B: Methodological, Elsevier, vol. 38(5), pages 431-440, June.
    2. Hu, Shou-Ren & Peeta, Srinivas & Chu, Chun-Hsiao, 2009. "Identification of vehicle sensor locations for link-based network traffic applications," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 873-894, September.
    3. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    4. Sherali, Hanif D. & Desai, Jitamitra & Rakha, Hesham, 2006. "A discrete optimization approach for locating Automatic Vehicle Identification readers for the provision of roadway travel times," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 857-871, December.
    5. He, Sheng-xue, 2013. "A graphical approach to identify sensor locations for link flow inference," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 65-76.
    6. Jabari, Saif Eddin & Zheng, Jianfeng & Liu, Henry X., 2014. "A probabilistic stationary speed–density relation based on Newell’s simplified car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 205-223.
    7. Ng, ManWo, 2012. "Synergistic sensor location for link flow inference without path enumeration: A node-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 781-788.
    8. Chiabaut, Nicolas & Leclercq, Ludovic & Buisson, Christine, 2010. "From heterogeneous drivers to macroscopic patterns in congestion," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 299-308, February.
    9. Leclercq, Ludovic, 2007. "Hybrid approaches to the solutions of the "Lighthill-Whitham-Richards" model," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 701-709, August.
    10. Danczyk, Adam & Liu, Henry X., 2011. "A mixed-integer linear program for optimizing sensor locations along freeway corridors," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 208-217, January.
    11. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Reliable sensor deployment for network traffic surveillance," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 218-231, January.
    12. Simonelli, Fulvio & Marzano, Vittorio & Papola, Andrea & Vitiello, Iolanda, 2012. "A network sensor location procedure accounting for o–d matrix estimate variability," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1624-1638.
    13. Xuegang(Jeff) Ban & Ryan Herring & J.D. Margulici & Alexandre M. Bayen, 2009. "Optimal Sensor Placement for Freeway Travel Time Estimation," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 697-721, Springer.
    14. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Li & Jabari, Saif Eddin, 2019. "Position weighted backpressure intersection control for urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 435-461.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Chenyi & Zhu, Ning & Ling, Shuai & Ma, Shoufeng & Huang, Yongxi, 2016. "Heterogeneous sensor location model for path reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 77-97.
    2. Viti, Francesco & Rinaldi, Marco & Corman, Francesco & Tampère, Chris M.J., 2014. "Assessing partial observability in network sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 65-89.
    3. Zhu, Ning & Fu, Chenyi & Zhang, Xuanyi & Ma, Shoufeng, 2022. "A network sensor location problem for link flow observability and estimation," European Journal of Operational Research, Elsevier, vol. 300(2), pages 428-448.
    4. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng, 2017. "A stochastic program approach for path reconstruction oriented sensor location model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 210-237.
    5. Xing, Tao & Zhou, Xuesong & Taylor, Jeffrey, 2013. "Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 66-90.
    6. Salari, Mostafa & Kattan, Lina & Lam, William H.K. & Lo, H.P. & Esfeh, Mohammad Ansari, 2019. "Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 216-251.
    7. Rinaldi, Marco & Viti, Francesco, 2017. "Exact and approximate route set generation for resilient partial observability in sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 86-119.
    8. Xiaopeng Li & Yanfeng Ouyang, 2012. "Reliable Traffic Sensor Deployment Under Probabilistic Disruptions and Generalized Surveillance Effectiveness Measures," Operations Research, INFORMS, vol. 60(5), pages 1183-1198, October.
    9. Lo, Hong K. & Chen, Anthony & Castillo, Enrique, 2016. "Robust network sensor location for complete link flow observability under uncertaintyAuthor-Name: Xu, Xiangdong," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 1-20.
    10. Hadavi, Majid & Shafahi, Yousef, 2016. "Vehicle identification sensor models for origin–destination estimation," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 82-106.
    11. Jabari, Saif Eddin & Zheng, Jianfeng & Liu, Henry X., 2014. "A probabilistic stationary speed–density relation based on Newell’s simplified car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 205-223.
    12. He, Sheng-xue, 2013. "A graphical approach to identify sensor locations for link flow inference," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 65-76.
    13. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    14. Taylor, Jeffrey & Zhou, Xuesong & Rouphail, Nagui M. & Porter, Richard J., 2015. "Method for investigating intradriver heterogeneity using vehicle trajectory data: A Dynamic Time Warping approach," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 59-80.
    15. Chen, Danjue & Laval, Jorge & Zheng, Zuduo & Ahn, Soyoung, 2012. "A behavioral car-following model that captures traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 744-761.
    16. Lu, Chung-Cheng & Liu, Jiangtao & Qu, Yunchao & Peeta, Srinivas & Rouphail, Nagui M. & Zhou, Xuesong, 2016. "Eco-system optimal time-dependent flow assignment in a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 217-239.
    17. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    18. Castillo, Enrique & Calviño, Aida & Lo, Hong K. & Menéndez, José María & Grande, Zacarías, 2014. "Non-planar hole-generated networks and link flow observability based on link counters," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 239-261.
    19. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    20. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjtl:v:5:y:2016:i:4:d:10.1007_s13676-015-0086-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.