IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v38y2018i2d10.1007_s10669-018-9688-3.html
   My bibliography  Save this article

A “solution-focused” comparative risk assessment of conventional and synthetic biology approaches to control mosquitoes carrying the dengue fever virus

Author

Listed:
  • Adam M. Finkel

    (University of Pennsylvania Law School
    University of Michigan, School of Public Health)

  • Benjamin D. Trump

    (University of Michigan, School of Public Health)

  • Diana Bowman

    (Arizona State University School for the Future of Innovation in Society, Sandra Day O’Connor College of Law)

  • Andrew Maynard

    (Arizona State University School for the Future of Innovation in Society, ASU Risk Innovation Lab)

Abstract

Emerging technologies often pose various uncertain health risks that cause policymakers to hesitate to allow resultant products and processes to enter the market—but they also may offer large benefits, including the potential to greatly reduce some of the very risks currently most greatly affecting public health and the environment. Synthetic biology serves as one such emerging technology that, despite its potential benefits to various fields, gives policymakers pause until the human and environmental health risks posed by genetically engineered organisms are better characterized and assessed. Given various limitations of our current paradigm for making risk management decisions, some of which are caused by limitations of conventional methods of quantitative risk assessment (QRA), a modified approach to emerging technology characterization and assessment might be a needed step change. This paper demonstrates how one such approach—“solution-focused risk assessment” (Finkel, Hum Ecol Risk Assess 17(4):754–787, 2011)—can help evaluate synthetic biology products against conventional competitors. Specifically, this paper conducts a SFRA for Oxitec’s engineered Aedes aegypti mosquito, which serves as a synthetic biology option for dengue virus vector control.

Suggested Citation

  • Adam M. Finkel & Benjamin D. Trump & Diana Bowman & Andrew Maynard, 2018. "A “solution-focused” comparative risk assessment of conventional and synthetic biology approaches to control mosquitoes carrying the dengue fever virus," Environment Systems and Decisions, Springer, vol. 38(2), pages 177-197, June.
  • Handle: RePEc:spr:envsyd:v:38:y:2018:i:2:d:10.1007_s10669-018-9688-3
    DOI: 10.1007/s10669-018-9688-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-018-9688-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-018-9688-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John S. Evans & John D. Graham & George M. Gray & Robert L. Sielken, 1994. "A Distributional Approach to Characterizing Low‐Dose Cancer Risk," Risk Analysis, John Wiley & Sons, vol. 14(1), pages 25-34, February.
    2. Janet Fang, 2010. "Ecology: A world without mosquitoes," Nature, Nature, vol. 466(7305), pages 432-434, July.
    3. Adam M. Finkel & George Gray, 2018. "Taking the reins: how regulatory decision-makers can stop being hijacked by uncertainty," Environment Systems and Decisions, Springer, vol. 38(2), pages 230-238, June.
    4. Trump, Benjamin D., 2017. "Synthetic biology regulation and governance: Lessons from TAPIC for the United States, European Union, and Singapore," Health Policy, Elsevier, vol. 121(11), pages 1139-1146.
    5. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    6. Mylène Weill & Georges Lutfalla & Knud Mogensen & Fabrice Chandre & Arnaud Berthomieu & Claire Berticat & Nicole Pasteur & Alexandre Philips & Philippe Fort & Michel Raymond, 2003. "Insecticide resistance in mosquito vectors," Nature, Nature, vol. 423(6936), pages 136-137, May.
    7. Emily Waltz, 2016. "US reviews plan to infect mosquitoes with bacteria to stop disease," Nature, Nature, vol. 533(7604), pages 450-451, May.
    8. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scott L. Greer & Benjamin Trump, 2019. "Regulation and regime: the comparative politics of adaptive regulation in synthetic biology," Policy Sciences, Springer;Society of Policy Sciences, vol. 52(4), pages 505-524, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gundula Glowka & Andreas Kallmünzer & Anita Zehrer, 2021. "Enterprise risk management in small and medium family enterprises: the role of family involvement and CEO tenure," International Entrepreneurship and Management Journal, Springer, vol. 17(3), pages 1213-1231, September.
    2. Benischke, Mirko H. & Guldiken, Orhun & Doh, Jonathan P. & Martin, Geoffrey & Zhang, Yanze, 2022. "Towards a behavioral theory of MNC response to political risk and uncertainty: The role of CEO wealth at risk," Journal of World Business, Elsevier, vol. 57(1).
    3. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    4. K. Karthikeyan & S. Bharath & K. Ranjith Kumar, 2012. "An Empirical Study on Investors’ Perception towards Mutual Fund Products through Banks with Reference to Tiruchirapalli City, Tamil Nadu," Vision, , vol. 16(2), pages 101-108, June.
    5. Nicola Paltrinieri & Nicolas Dechy & Ernesto Salzano & Mike Wardman & Valerio Cozzani, 2012. "Lessons Learned from Toulouse and Buncefield Disasters: From Risk Analysis Failures to the Identification of Atypical Scenarios Through a Better Knowledge Management," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1404-1419, August.
    6. Sakirul Khan & Sheikh Mohammad Fazle Akbar & Takaaki Yahiro & Mamun Al Mahtab & Kazunori Kimitsuki & Takehiro Hashimoto & Akira Nishizono, 2022. "Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    7. Shengzhang Dong & George Dimopoulos, 2023. "Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Louis Anthony (Tony) Cox, Jr., 2012. "Community Resilience and Decision Theory Challenges for Catastrophic Events," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1919-1934, November.
    9. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    10. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    11. Chen, Fuzhong & Hsu, Chien-Lung & Lin, Arthur J. & Li, Haifeng, 2020. "Holding risky financial assets and subjective wellbeing: Empirical evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    12. Niël Almero Krüger & Natanya Meyer, 2021. "The Development of a Small and Medium-Sized Business Risk Management Intervention Tool," JRFM, MDPI, vol. 14(7), pages 1-14, July.
    13. James H. Lambert & Rachel K. Jennings & Nilesh N. Joshi, 2006. "Integration of risk identification with business process models," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 187-198, September.
    14. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    15. Kasai, Naoya & Matsuhashi, Shigemi & Sekine, Kazuyoshi, 2013. "Accident occurrence model for the risk analysis of industrialfacilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 71-74.
    16. Hone-Jay Chu & Bo-Cheng Lin & Ming-Run Yu & Ta-Chien Chan, 2016. "Minimizing Spatial Variability of Healthcare Spatial Accessibility—The Case of a Dengue Fever Outbreak," IJERPH, MDPI, vol. 13(12), pages 1-11, December.
    17. J. C. Helton & F. J. Davis, 2002. "Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 591-622, June.
    18. Michael Greenberg & Paul Lioy & Birnur Ozbas & Nancy Mantell & Sastry Isukapalli & Michael Lahr & Tayfur Altiok & Joseph Bober & Clifton Lacy & Karen Lowrie & Henry Mayer & Jennifer Rovito, 2013. "Passenger Rail Security, Planning, and Resilience: Application of Network, Plume, and Economic Simulation Models as Decision Support Tools," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 1969-1986, November.
    19. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    20. Scott L. Greer & Benjamin Trump, 2019. "Regulation and regime: the comparative politics of adaptive regulation in synthetic biology," Policy Sciences, Springer;Society of Policy Sciences, vol. 52(4), pages 505-524, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:38:y:2018:i:2:d:10.1007_s10669-018-9688-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.