IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i3d10.1007_s10668-023-03006-5.html
   My bibliography  Save this article

Heating and cooling methods for the subirrigation of strawberry plants using air and geothermal heat pumps

Author

Listed:
  • Shigeoki Moritani

    (Hirosaki University)

  • Hirotada Nanjo

    (Hirosaki University)

  • Atsushi Itou

    (Aomori Prefectural Industrial Technology Research Center)

  • Pyone Win Win

    (Murdoch University)

  • Mohamed A. M. Abd Elbasit

    (Sol Plaatje University)

Abstract

Temperature control with conserving nutrients and irrigation water reduces energy loss, leading to economic and sustainable greenhouse farming. A subirrigation system was applied to strawberry cultivation by placing tubes containing temperature-controlled water (obtained using heat pumps with air or geothermal heat sources) under the soilless substrate of a cultivation container. A ball tap supplied water gravitationally, avoiding the need for a water reservoir, thereby minimizing the volume of water required for heating and cooling. The substrate temperature in the heat pump treatments retained an optimal temperature for growth (averaging 18.4 ℃ in all seasons). The coefficient of performance of the heat pump with the geothermal heat source during heating operations was approximately 1.8 times higher than that with the air heat source. However, the geothermal heat source reduced overall electricity consumption by 14.9% for five months of the experimental period. Production was increased by 21% and 36% in the geothermal and air-source heat pump treatments, respectively, compared to that of the control, owing to the preferable condition of the substrate for strawberry growth. Although salinization of the substrate due to the closed irrigation system may be of concern and damage plant growth, the subirrigation system minimized the loss of water, nutrients, and heat owing to the omission of a reservoir. Furthermore, with minor modifications, the proposed system could be converted to a dual heat pump system to enhance energy use efficiency.

Suggested Citation

  • Shigeoki Moritani & Hirotada Nanjo & Atsushi Itou & Pyone Win Win & Mohamed A. M. Abd Elbasit, 2024. "Heating and cooling methods for the subirrigation of strawberry plants using air and geothermal heat pumps," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(3), pages 7235-7253, March.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:3:d:10.1007_s10668-023-03006-5
    DOI: 10.1007/s10668-023-03006-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03006-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03006-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Violante, Anna Carmela & Donato, Filippo & Guidi, Giambattista & Proposito, Marco, 2022. "Comparative life cycle assessment of the ground source heat pump vs air source heat pump," Renewable Energy, Elsevier, vol. 188(C), pages 1029-1037.
    2. Ferrarezi, Rhuanito Soranz & Testezlaf, Roberto, 2017. "Automated ebb-and-flow subirrigation for citrus liners production. II. Pests, diseases and nutrient concentration," Agricultural Water Management, Elsevier, vol. 192(C), pages 21-32.
    3. Moritani Shigeoki & Sasaki Kazuya & Itaka Kenji, 2020. "Development of low-cost evaluation method for coefficient of performance of heat pump for heating greenhouses," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6877-6890, October.
    4. Rouphael, Youssef & Cardarelli, Mariateresa & Rea, Elvira & Battistelli, Alberto & Colla, Giuseppe, 2006. "Comparison of the subirrigation and drip-irrigation systems for greenhouse zucchini squash production using saline and non-saline nutrient solutions," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 99-117, April.
    5. Ahmed, B.A. Ould & Yamamoto, T. & Rasiah, V. & Inoue, M. & Anyoji, H., 2007. "The impact of saline water irrigation management options in a dune sand on available soil water and its salinity," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 63-72, March.
    6. Venezia, Accursio & Colla, Giuseppe & Di Cesare, Carlo & Stipic, Marija & Massa, Daniele, 2022. "The effect of different fertigation strategies on salinity and nutrient dynamics of cherry tomato grown in a gutter subirrigation system," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Li, Xianting & Lyu, Weihua & Ran, Siyuan & Wang, Baolong & Wu, Wei & Yang, Zixu & Jiang, Sihang & Cui, Mengdi & Song, Pengyuan & You, Tian & Shi, Wenxing, 2020. "Combination principle of hybrid sources and three typical types of hybrid source heat pumps for year-round efficient operation," Energy, Elsevier, vol. 193(C).
    8. Carmassi, G. & Incrocci, L. & Maggini, R. & Malorgio, F. & Tognoni, F. & Pardossi, A., 2007. "An aggregated model for water requirements of greenhouse tomato grown in closed rockwool culture with saline water," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 73-82, March.
    9. Michopoulos, A. & Zachariadis, T. & Kyriakis, N., 2013. "Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger," Energy, Elsevier, vol. 51(C), pages 349-357.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zambon, Flavia Tabay & Meadows, Taylor D. & Eckman, Megan A. & Rodriguez, Katya Michelle Rivera & Ferrarezi, Rhuanito Soranz, 2022. "Automated ebb-and-flow subirrigation accelerates citrus liner production in treepots," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Luo, Zhenyu & Zhu, Na & Yu, Zhongyi & Zhang, Qin & Yan, Lei & Hu, Pingfang, 2024. "Performance study of dual-source heat pump integrated with radiation capillary terminal system," Energy, Elsevier, vol. 304(C).
    3. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Jing, Heran, 2022. "Operation mode performance and optimization of a novel coupled air and ground source heat pump system with energy storage: Case study of a hotel building," Renewable Energy, Elsevier, vol. 201(P1), pages 889-903.
    4. Ferrarezi, Rhuanito Soranz & Testezlaf, Roberto, 2017. "Automated ebb-and-flow subirrigation for citrus liners production. I. Plant growth," Agricultural Water Management, Elsevier, vol. 192(C), pages 45-57.
    5. Jani, Arun D. & Meadows, Taylor D. & Eckman, Megan A. & Ferrarezi, Rhuanito Soranz, 2021. "Automated ebb-and-flow subirrigation conserves water and enhances citrus liner growth compared to capillary mat and overhead irrigation methods," Agricultural Water Management, Elsevier, vol. 246(C).
    6. Varlagas, H. & Savvas, D. & Mouzakis, G. & Liotsos, C. & Karapanos, I. & Sigrimis, N., 2010. "Modelling uptake of Na+ and Cl- by tomato in closed-cycle cultivation systems as influenced by irrigation water salinity," Agricultural Water Management, Elsevier, vol. 97(9), pages 1242-1250, September.
    7. Tsagarakis, Konstantinos P. & Efthymiou, Loukia & Michopoulos, Apostolos & Mavragani, Amaryllis & Anđelković, Aleksandar S. & Antolini, Francesco & Bacic, Mario & Bajare, Diana & Baralis, Matteo & Bog, 2020. "A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines," Renewable Energy, Elsevier, vol. 147(P2), pages 2556-2571.
    8. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    9. Qianyun Wen & Qiyao Yan & Junjie Qu & Yang Liu, 2021. "Fuzzy Ensemble of Multi-Criteria Decision Making Methods for Heating Energy Transition in Danish Households," Mathematics, MDPI, vol. 9(19), pages 1-22, September.
    10. Shamoushaki, Moein & Koh, S.C. Lenny, 2024. "Net-zero life cycle supply chain assessment of heat pump technologies," Energy, Elsevier, vol. 309(C).
    11. Hakkaki-Fard, Ali & Eslami-Nejad, Parham & Aidoun, Zine & Ouzzane, Mohamed, 2015. "A techno-economic comparison of a direct expansion ground-source and an air-source heat pump system in Canadian cold climates," Energy, Elsevier, vol. 87(C), pages 49-59.
    12. Ibrahim, Oussama & Fardoun, Farouk & Younes, Rafic & Louahlia-Gualous, Hasna, 2014. "Air source heat pump water heater: Dynamic modeling, optimal energy management and mini-tubes condensers," Energy, Elsevier, vol. 64(C), pages 1102-1116.
    13. Borge-Diez, David & Colmenar-Santos, Antonio & Pérez-Molina, Clara & López-Rey, África, 2015. "Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities," Energy, Elsevier, vol. 88(C), pages 821-836.
    14. Rouhi Rad, Mani & Medina, Nataly, 2024. "Water Scarcity Exacerbates the Negative Effects of Salinity on Irrigated Agriculture," 2024 Annual Meeting, July 28-30, New Orleans, LA 343866, Agricultural and Applied Economics Association.
    15. Jing, Z.X. & Jiang, X.S. & Wu, Q.H. & Tang, W.H. & Hua, B., 2014. "Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system," Energy, Elsevier, vol. 73(C), pages 399-415.
    16. Venezia, Accursio & Colla, Giuseppe & Di Cesare, Carlo & Stipic, Marija & Massa, Daniele, 2022. "The effect of different fertigation strategies on salinity and nutrient dynamics of cherry tomato grown in a gutter subirrigation system," Agricultural Water Management, Elsevier, vol. 262(C).
    17. Longo, L. & Colantoni, A. & Castellucci, S. & Carlini, M. & Vecchione, L. & Savuto, E. & Pallozzi, V. & Di Carlo, A. & Bocci, E. & Moneti, M. & Cocchi, S. & Boubaker, K., 2015. "DEA (data envelopment analysis)-assisted supporting measures for ground coupled heat pumps implementing in Italy: A case study," Energy, Elsevier, vol. 90(P2), pages 1967-1972.
    18. Roshan Hehar & William Burges & Thomas Fender & Jonathan Radcliffe & Neha Mehta, 2025. "Data-Based Modelling for Quantifying Carbon Dioxide Emissions Reduction Potential by Using Heat Pumps," Energies, MDPI, vol. 18(3), pages 1-16, February.
    19. Massa, Daniele & Magán, Juan José & Montesano, Francesco Fabiano & Tzortzakis, Nikolaos, 2020. "Minimizing water and nutrient losses from soilless cropping in southern Europe," Agricultural Water Management, Elsevier, vol. 241(C).
    20. Vicente Serna-Escolano & Alicia Dobón-Suárez & María J. Giménez & Pedro J. Zapata & María Gutiérrez-Pozo, 2023. "Effect of Fertigation on the Physicochemical Quality and Antioxidant System of ‘Fino’ Lemons during Postharvest Storage," Agriculture, MDPI, vol. 13(4), pages 1-10, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:3:d:10.1007_s10668-023-03006-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.