IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v22y2020i2d10.1007_s10668-018-0216-x.html
   My bibliography  Save this article

Quality attributes of commercial charcoals produced in Amapá, a Brazilian state located in the Amazonia

Author

Listed:
  • Maria Rosário da Silva e Silva

    (University of Amapá State/UEAP)

  • Edielza Aline Santos Ribeiro

    (Federal University of Amapá/UNIFAP)

  • Jardel Pinto Barbosa

    (University of Amapá State/UEAP)

  • Francisco Tarcísio Alves Júnior

    (University of Amapá State/UEAP)

  • Marcelino Carneiro Guedes

    (Brazilian Agricultural Research Corporation/EMBRAPA-Amapá)

  • Paulo Guilherme Pinheiro

    (Rural Federal University of Amazonia/UFRA)

  • Lina Bufalino

    (University of Amapá State/UEAP
    Rural Federal University of Amazonia/UFRA)

Abstract

The charcoals of Amapá, a Brazilian state located in the Amazonia forest, have been produced from wastes of high-quality native and exotic wood species. However, there is no control to avoid mixing raw materials with different potentials for bioenergy. This work aimed to compare the quality of two brands of Amapá charcoals for domestic use, besides to analyze the variability of properties within and among packages. Charcoals of brands A and B were produced from harvesting wastes of Acacia mangium wood and sawing wastes of mixed native wood species, respectively. Five packages of each brand were acquired, from which thirteen samples were randomly selected for physical and chemical analyses. The higher heating value was estimated from the chemical composition. The brands were compared by analysis of variance or Wilcoxon–Mann–Whitney test. The variability within and between packages was investigated through box plots. The Amapá charcoals showed moisture content (≈ 7.3%) somewhat above the stipulated (5%) by the Brazilian standardization for domestic use. The proper quality of the charcoals was attested by high apparent density (≈ 0.568 g/cm3), high fixed carbon (≈ 87.2%), low volatile matter (≈ 11.7%), low ash content (≈ 1.0%) and high higher heating value (≈ 32,925.40 kJ/kg). The charcoal of the brand B showed better quality considering significant higher average apparent density, no outlier of ash content above the maximum ideal value and overall lower variability within and among packages of the properties. The apparent density greatly varied among packages, while a greater variation within packages was observed for the other properties.

Suggested Citation

  • Maria Rosário da Silva e Silva & Edielza Aline Santos Ribeiro & Jardel Pinto Barbosa & Francisco Tarcísio Alves Júnior & Marcelino Carneiro Guedes & Paulo Guilherme Pinheiro & Lina Bufalino, 2020. "Quality attributes of commercial charcoals produced in Amapá, a Brazilian state located in the Amazonia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 719-732, February.
  • Handle: RePEc:spr:endesu:v:22:y:2020:i:2:d:10.1007_s10668-018-0216-x
    DOI: 10.1007/s10668-018-0216-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-018-0216-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-018-0216-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anabela Botelho & Lina Lourenço-Gomes & Lígia Pinto & Sara Sousa & Marieta Valente, 2016. "Using stated preference methods to assess environmental impacts of forest biomass power plants in Portugal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(5), pages 1323-1337, October.
    2. Katyal, Surinder & Thambimuthu, Kelly & Valix, Marjorie, 2003. "Carbonisation of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics," Renewable Energy, Elsevier, vol. 28(5), pages 713-725.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strezov, Vladimir, 2006. "Iron ore reduction using sawdust: Experimental analysis and kinetic modelling," Renewable Energy, Elsevier, vol. 31(12), pages 1892-1905.
    2. Yang, Xuanmin & Kang, Kang & Qiu, Ling & Zhao, Lixin & Sun, Renhua, 2020. "Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches," Renewable Energy, Elsevier, vol. 146(C), pages 1691-1699.
    3. Abdulaziz G. Alghamdi & Bandar H. Aljohani & Anwar A. Aly, 2021. "Impacts of Olive Waste-Derived Biochar on Hydro-Physical Properties of Sandy Soil," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    4. Paula Ferreira & Madalena Araújo & Luc Hens, 2016. "Energy and environment: bringing together engineering and economics," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(5), pages 1275-1277, October.
    5. Gillian Eggleston & Isabel Lima, 2015. "Sustainability Issues and Opportunities in the Sugar and Sugar-Bioproduct Industries," Sustainability, MDPI, vol. 7(9), pages 1-27, September.
    6. Anabela Botelho & Lina Lourenço-Gomes & Lígia M. Costa Pinto & Sara Sousa & Marieta Valente, 2018. "Discrete-choice experiments valuing local environmental impacts of renewables: two approaches to a case study in Portugal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 145-162, December.
    7. Johannes Lehmann & John Gaunt & Marco Rondon, 2006. "Bio-char Sequestration in Terrestrial Ecosystems – A Review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 395-419, March.
    8. Marculescu, Cosmin & Ciuta, Simona, 2013. "Wine industry waste thermal processing for derived fuel properties improvement," Renewable Energy, Elsevier, vol. 57(C), pages 645-652.
    9. Azevedo, Susana Garrido & Sequeira, Tiago & Santos, Marcelo & Mendes, Luis, 2019. "Biomass-related sustainability: A review of the literature and interpretive structural modeling," Energy, Elsevier, vol. 171(C), pages 1107-1125.
    10. Pinto, Lígia Costa & Sousa, Sara & Valente, Marieta, 2022. "Forest bioenergy as a land and wildfire management tool: Economic valuation under different informational contexts," Energy Policy, Elsevier, vol. 161(C).
    11. Nguyen Van Song & Thai Van Ha & Tran Duc Thuan & Nguyen Van Hanh & Dinh Van Tien & Nguyen Cong Tiep & Nguyen Thi Minh Phuong & Phan Anh Tu & Tran Ba Uan, 2021. "Development of Rice Husk Power Plants Based on Clean Development Mechanism: A Case Study in Mekong River Delta, Vietnam," Sustainability, MDPI, vol. 13(12), pages 1-10, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:22:y:2020:i:2:d:10.1007_s10668-018-0216-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.