IDEAS home Printed from https://ideas.repec.org/a/spr/digfin/v7y2025i2d10.1007_s42521-025-00125-8.html
   My bibliography  Save this article

Cryptos have rough volatility and correlated jumps

Author

Listed:
  • Lukas Krain

    (Humboldt-Universität zu Berlin)

  • Xiaorui ZUO

    (National University of Singapore)

  • Wolfgang Karl Härdle

    (Humboldt-Universität zu Berlin)

Abstract

Contrary to expectations some years ago, the crypto market has matured and gives the impression of an established financial eco-system. Certainly, some deviations from robustness, typically reflected in event related volatility bursts and spikes, are observed, but a liquid derivatives market has been established, at least for the dominant digital assets. It is, therefore, not only necessary for pricing contingent claims to understand the stochastic dynamics via a solid data analysis but also to provide instruments identifying volatility patterns and their dynamic evolvement. Using the Bitcoin as a representative instrument, we ventured to model this particular crypto coin dynamics via a combination of roughness in volatility and jumps in the underlying crypto currency. Findings on the roughness, e.g. the size of the Hurst exponent for the volatility dynamics, revealed remarkable differences when compared to corresponding estimates for equities and fixed income funds. Through a parametric bootstrap, we give evidence that both roughness and jumps are crucial for predicting the range of next-day returns in terms of a simulated confidence interval. By scaling up the jump sizes, we obtained a nicely working combination of volatility roughness and jumps (of the underlying) resulting in precise coverage levels. All calculations may be redone on quantlet.com and courselets are in .

Suggested Citation

  • Lukas Krain & Xiaorui ZUO & Wolfgang Karl Härdle, 2025. "Cryptos have rough volatility and correlated jumps," Digital Finance, Springer, vol. 7(2), pages 275-294, June.
  • Handle: RePEc:spr:digfin:v:7:y:2025:i:2:d:10.1007_s42521-025-00125-8
    DOI: 10.1007/s42521-025-00125-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42521-025-00125-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42521-025-00125-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    2. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    3. Hull, John & White, Alan, 1993. "One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(2), pages 235-254, June.
    4. Stanis{l}aw Dro.zd.z & Robert Gk{e}barowski & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marcin Wk{a}torek, 2018. "Bitcoin market route to maturity? Evidence from return fluctuations, temporal correlations and multiscaling effects," Papers 1804.05916, arXiv.org, revised Jul 2018.
    5. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    6. Sebastian Kunsteller & Janis Müller & Peter N. Posch, 2019. "Do illiquid stocks jump more frequently?," Applied Economics, Taylor & Francis Journals, vol. 51(25), pages 2764-2769, May.
    7. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    8. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    9. Takaishi, Tetsuya, 2020. "Rough volatility of Bitcoin," Finance Research Letters, Elsevier, vol. 32(C).
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    11. Ai Jun Hou & Weining Wang & Cathy Y H Chen & Wolfgang Karl Härdle, 2020. "Pricing Cryptocurrency Options," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 250-279.
    12. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    13. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    14. Mathieu Rosenbaum, 2011. "A new microstructure noise index," Quantitative Finance, Taylor & Francis Journals, vol. 11(6), pages 883-899.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takaishi, Tetsuya, 2025. "Multifractality and sample size influence on Bitcoin volatility patterns," Finance Research Letters, Elsevier, vol. 74(C).
    2. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    3. Kuo Shing Chen & J. Jimmy Yang, 2024. "Price dynamics and volatility jumps in bitcoin options," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
    4. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, December.
    5. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    6. Eduardo Abi Jaber & Donatien Hainaut & Edouard Motte, 2025. "The Volterra Stein-Stein model with stochastic interest rates," Papers 2503.01716, arXiv.org.
    7. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    8. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    9. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Marcin Wk{a}torek, 2023. "What is mature and what is still emerging in the cryptocurrency market?," Papers 2305.05751, arXiv.org.
    10. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    11. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    12. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    13. Tetsuya Takaishi, 2021. "Time-varying properties of asymmetric volatility and multifractality in Bitcoin," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-21, February.
    14. Marcin Wk{a}torek & Marcin Kr'olczyk & Jaros{l}aw Kwapie'n & Tomasz Stanisz & Stanis{l}aw Dro.zd.z, 2024. "Approaching multifractal complexity in decentralized cryptocurrency trading," Papers 2411.05951, arXiv.org.
    15. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
    16. Kolokolov, Aleksey & Livieri, Giulia & Pirino, Davide, 2018. "Statistical inferences for price staleness," SAFE Working Paper Series 236, Leibniz Institute for Financial Research SAFE.
    17. Tzouras, Spilios & Anagnostopoulos, Christoforos & McCoy, Emma, 2015. "Financial time series modeling using the Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 50-68.
    18. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    19. Nick James & Max Menzies, 2023. "Collective dynamics, diversification and optimal portfolio construction for cryptocurrencies," Papers 2304.08902, arXiv.org, revised Jun 2023.
    20. Matthieu Garcin & Clément Goulet, 2015. "A fully non-parametric heteroskedastic model," Documents de travail du Centre d'Economie de la Sorbonne 15086, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.

    More about this item

    Keywords

    Cryptos; Rough volatility; Jumps; Hurst exponent; Hawkes process;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:digfin:v:7:y:2025:i:2:d:10.1007_s42521-025-00125-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.