IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v46y2023i2d10.1007_s10203-023-00402-4.html
   My bibliography  Save this article

Optimisation of drawdowns by generalised reinsurance in the classical risk model

Author

Listed:
  • Leonie Violetta Brinker

    (FernUniversität in Hagen)

  • Hanspeter Schmidli

    (University of Cologne)

Abstract

We consider a Cramér–Lundberg model representing the surplus of an insurance company under a general reinsurance control process. We aim to minimise the expected time during which the surplus is bounded away from its own running maximum by at least $$d>0$$ d > 0 (discounted at a preference rate $$\delta >0$$ δ > 0 ) by choosing a reinsurance strategy. By analysing the drawdown process (i.e. the absolute distance of the controlled surplus model to its maximum) directly, we prove that the value function fulfils the corresponding Hamilton–Jacobi–Bellman equation and show how one can calculate the value function and the optimal strategy. If the initial drawdown is critically large, the problem corresponds to the maximisation of the Laplace transform of a passage time. We show that a constant retention level is optimal. If the drawdown is smaller than d, the problem can be expressed as an element of a set of Gerber–Shiu optimisation problems. We show how these problems can be solved and that the optimal strategy is of feedback form. We illustrate the theory by examples of the cases of light and heavy tailed claims.

Suggested Citation

  • Leonie Violetta Brinker & Hanspeter Schmidli, 2023. "Optimisation of drawdowns by generalised reinsurance in the classical risk model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(2), pages 635-665, December.
  • Handle: RePEc:spr:decfin:v:46:y:2023:i:2:d:10.1007_s10203-023-00402-4
    DOI: 10.1007/s10203-023-00402-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-023-00402-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-023-00402-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia Han & Zhibin Liang & Kam Chuen Yuen, 2018. "Optimal proportional reinsurance to minimize the probability of drawdown under thinning-dependence structure," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2018(10), pages 863-889, November.
    2. Chen, Xinfu & Landriault, David & Li, Bin & Li, Dongchen, 2015. "On minimizing drawdown risks of lifetime investments," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 46-54.
    3. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    4. Han, Xia & Liang, Zhibin & Zhang, Caibin, 2019. "Optimal proportional reinsurance with common shock dependence to minimise the probability of drawdown," Annals of Actuarial Science, Cambridge University Press, vol. 13(2), pages 268-294, September.
    5. Zabarankin, Michael & Pavlikov, Konstantin & Uryasev, Stan, 2014. "Capital Asset Pricing Model (CAPM) with drawdown measure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 508-517.
    6. Leonie Violetta Brinker, 2021. "Minimal Expected Time in Drawdown through Investment for an Insurance Diffusion Model," Risks, MDPI, vol. 9(1), pages 1-18, January.
    7. T. Arun, 2012. "The Merton Problem with a Drawdown Constraint on Consumption," Papers 1210.5205, arXiv.org.
    8. Hansjörg Albrecher & Pablo Azcue & Nora Muler, 2023. "Optimal dividends under a drawdown constraint and a curious square-root rule," Finance and Stochastics, Springer, vol. 27(2), pages 341-400, April.
    9. Rui Ding & Stan Uryasev, 2022. "Drawdown beta and portfolio optimization," Quantitative Finance, Taylor & Francis Journals, vol. 22(7), pages 1265-1276, July.
    10. Mijatović, Aleksandar & Pistorius, Martijn R., 2012. "On the drawdown of completely asymmetric Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3812-3836.
    11. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.
    12. Gerber, Hans U. & Lin, X. Sheldon & Yang, Hailiang, 2006. "A Note on the Dividends-Penalty Identity and the Optimal Dividend Barrier," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 489-503, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonie Violetta Brinker, 2021. "Minimal Expected Time in Drawdown through Investment for an Insurance Diffusion Model," Risks, MDPI, vol. 9(1), pages 1-18, January.
    2. Mingxin Guo & Zuo Quan Xu, 2024. "Stochastic optimal self-path-dependent control: A new type of variational inequality and its viscosity solution," Papers 2412.11383, arXiv.org.
    3. Zsurkis, Gabriel & Nicolau, João & Rodrigues, Paulo M.M., 2024. "First passage times in portfolio optimization: A novel nonparametric approach," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1074-1085.
    4. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, April.
    5. Allen, D.E. & McAleer, M.J. & Powell, R.J. & Singh, A.K., 2015. "Down-side Risk Metrics as Portfolio Diversification Strategies across the GFC," Econometric Institute Research Papers EI2015-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Tommaso Proietti, 2024. "Ups and (Draw)Downs," CEIS Research Paper 576, Tor Vergata University, CEIS, revised 03 May 2024.
    7. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    8. Xie, Jiayi & Zhang, Zhimin, 2020. "Statistical estimation for some dividend problems under the compound Poisson risk model," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 101-115.
    9. Wang, Wenyuan & Chen, Ping & Li, Shuanming, 2020. "Generalized expected discounted penalty function at general drawdown for Lévy risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 12-25.
    10. Stanislaus Maier-Paape & Qiji Jim Zhu, 2018. "A General Framework for Portfolio Theory. Part II: Drawdown Risk Measures," Risks, MDPI, vol. 6(3), pages 1-31, August.
    11. Chonghu Guan & Jiacheng Fan & Zuo Quan Xu, 2023. "Optimal dividend payout with path-dependent drawdown constraint," Papers 2312.01668, arXiv.org.
    12. Cheung, Eric C.K. & Landriault, David, 2010. "A generalized penalty function with the maximum surplus prior to ruin in a MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 127-134, February.
    13. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    14. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    15. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2021. "On the analysis of deep drawdowns for the Lévy insurance risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 147-155.
    16. David E. Allen & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2014. "European Market Portfolio Diversifcation Strategies across the GFC," Working Papers in Economics 14/25, University of Canterbury, Department of Economics and Finance.
    17. Thonhauser, Stefan & Albrecher, Hansjorg, 2007. "Dividend maximization under consideration of the time value of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 163-184, July.
    18. Ankush Agarwal & Ronnie Sircar, 2017. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Working Papers hal-01388399, HAL.
    19. Chonghu Guan & Zuo Quan Xu, 2023. "Optimal ratcheting of dividend payout under Brownian motion surplus," Papers 2308.15048, arXiv.org, revised Jul 2024.
    20. Grechuk, Bogdan & Zabarankin, Michael, 2018. "Direct data-based decision making under uncertainty," European Journal of Operational Research, Elsevier, vol. 267(1), pages 200-211.

    More about this item

    Keywords

    Drawdowns; General optimal reinsurance; Classical risk model; Hamilton–Jacobi–Bellman equation;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:46:y:2023:i:2:d:10.1007_s10203-023-00402-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.