IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v91y2020icp12-25.html
   My bibliography  Save this article

Generalized expected discounted penalty function at general drawdown for Lévy risk processes

Author

Listed:
  • Wang, Wenyuan
  • Chen, Ping
  • Li, Shuanming

Abstract

This paper considers an insurance surplus process modeled by a spectrally negative Lévy process. Instead of the time of ruin in the traditional setting, we apply the time of drawdown as the risk indicator in this paper. We study the joint distribution of the time of drawdown, the running maximum at drawdown, the last minimum before drawdown, the surplus before drawdown and the surplus at drawdown (may not be deficit in this case), which generalizes the known results on the classical expected discounted penalty function in Gerber and Shiu (1998). The results have semi-explicit expressions in terms of the q-scale functions and the Lévy measure associated with the Lévy process. As applications, the obtained result is applied to recover results in the literature and to obtain new results for the Gerber–Shiu function at ruin for risk processes embedded with a loss-carry-forward taxation system or a barrier dividend strategy. Moreover, numerical examples are provided to illustrate the results.

Suggested Citation

  • Wang, Wenyuan & Chen, Ping & Li, Shuanming, 2020. "Generalized expected discounted penalty function at general drawdown for Lévy risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 12-25.
  • Handle: RePEc:eee:insuma:v:91:y:2020:i:c:p:12-25
    DOI: 10.1016/j.insmatheco.2019.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668719304238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2019.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xinfu & Landriault, David & Li, Bin & Li, Dongchen, 2015. "On minimizing drawdown risks of lifetime investments," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 46-54.
    2. Vladimir Cherny & Jan Obłój, 2013. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Finance and Stochastics, Springer, vol. 17(4), pages 771-800, October.
    3. Biffis, Enrico & Morales, Manuel, 2010. "On a generalization of the Gerber-Shiu function to path-dependent penalties," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 92-97, February.
    4. Biffis, Enrico & Kyprianou, Andreas E., 2010. "A note on scale functions and the time value of ruin for Lévy insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 85-91, February.
    5. Romuald Elie & Nizar Touzi, 2008. "Optimal lifetime consumption and investment under a drawdown constraint," Finance and Stochastics, Springer, vol. 12(3), pages 299-330, July.
    6. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    7. Peter Carr, 2014. "First-order calculus and option pricing," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 1-19.
    8. Vladimir Cherny & Jan Obloj, 2011. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Papers 1110.6289, arXiv.org, revised Apr 2013.
    9. Angoshtari, Bahman & Bayraktar, Erhan & Young, Virginia R., 2016. "Minimizing the probability of lifetime drawdown under constant consumption," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 210-223.
    10. Dickson,David C. M., 2010. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9780521176750.
    11. Dufresne, F. & Gerber, H. U., 1993. "The probability of ruin for the Inverse Gaussian and related processes," Insurance: Mathematics and Economics, Elsevier, vol. 12(1), pages 9-22, February.
    12. José Garrido & Manuel Morales, 2006. "On The Expected Discounted Penalty function for Lévy Risk Processes," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(4), pages 196-216.
    13. Loeffen, R. & Palmowski, Z. & Surya, B.A., 2018. "Discounted penalty function at Parisian ruin for Lévy insurance risk process," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 190-197.
    14. Sanford J. Grossman & Zhongquan Zhou, 1993. "Optimal Investment Strategies For Controlling Drawdowns," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 241-276, July.
    15. Avram, Florin & Vu, Nhat Linh & Zhou, Xiaowen, 2017. "On taxed spectrally negative Lévy processes with draw-down stopping," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 69-74.
    16. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aili Zhang & Ping Chen & Shuanming Li & Wenyuan Wang, 2020. "Risk Modelling on Liquidations with L\'{e}vy Processes," Papers 2007.01426, arXiv.org.
    2. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    3. Leonie Violetta Brinker, 2021. "Minimal Expected Time in Drawdown through Investment for an Insurance Diffusion Model," Risks, MDPI, vol. 9(1), pages 1-18, January.
    4. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    5. Zhang, Aili & Chen, Ping & Li, Shuanming & Wang, Wenyuan, 2022. "Risk modelling on liquidations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    6. Kang Hu & Ya Huang & Yingchun Deng, 2023. "Estimating the Gerber–Shiu Function in the Two-Sided Jumps Risk Model by Laguerre Series Expansion," Mathematics, MDPI, vol. 11(9), pages 1-30, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonie Violetta Brinker, 2021. "Minimal Expected Time in Drawdown through Investment for an Insurance Diffusion Model," Risks, MDPI, vol. 9(1), pages 1-18, January.
    2. Zhang, Aili & Chen, Ping & Li, Shuanming & Wang, Wenyuan, 2022. "Risk modelling on liquidations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    3. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    4. Landriault, David & Li, Bin & Li, Shu, 2015. "Analysis of a drawdown-based regime-switching Lévy insurance model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 98-107.
    5. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    6. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, January.
    7. Ankush Agarwal & Ronnie Sircar, 2017. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Working Papers hal-01388399, HAL.
    8. Ankush Agarwal & Ronnie Sircar, 2016. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Papers 1610.08558, arXiv.org.
    9. Kolkovska, Ekaterina T. & Martín-González, Ehyter M., 2016. "Gerber–Shiu functionals for classical risk processes perturbed by an α-stable motion," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 22-28.
    10. Eric C. K. Cheung & David Landriault, 2012. "On a Risk Model with Surplus-dependent Premium and Tax Rates," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 233-251, June.
    11. Chen, Xinfu & Landriault, David & Li, Bin & Li, Dongchen, 2015. "On minimizing drawdown risks of lifetime investments," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 46-54.
    12. Aili Zhang & Ping Chen & Shuanming Li & Wenyuan Wang, 2020. "Risk Modelling on Liquidations with L\'{e}vy Processes," Papers 2007.01426, arXiv.org.
    13. Runhuan Feng & Yasutaka Shimizu, 2013. "On a Generalization from Ruin to Default in a Lévy Insurance Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 773-802, December.
    14. Zan Yu & Lianzeng Zhang, 2024. "Computing the Gerber-Shiu function with interest and a constant dividend barrier by physics-informed neural networks," Papers 2401.04378, arXiv.org.
    15. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    16. Paolo Guasoni & Jan Obłój, 2016. "The Incentives Of Hedge Fund Fees And High-Water Marks," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 269-295, April.
    17. Zied Ben-Salah & H'el`ene Gu'erin & Manuel Morales & Hassan Omidi Firouzi, 2014. "On the Depletion Problem for an Insurance Risk Process: New Non-ruin Quantities in Collective Risk Theory," Papers 1406.6952, arXiv.org.
    18. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    19. Stanislaus Maier-Paape & Andreas Platen & Qiji Jim Zhu, 2019. "A General Framework for Portfolio Theory. Part III: Multi-Period Markets and Modular Approach," Risks, MDPI, vol. 7(2), pages 1-31, June.
    20. Feng, Runhuan & Shimizu, Yasutaka, 2014. "Potential measures for spectrally negative Markov additive processes with applications in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 11-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:91:y:2020:i:c:p:12-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.