IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

A filling function method for unconstrained global optimization

Listed author(s):
  • F. Lampariello

    ()

  • G. Liuzzi

    ()

Registered author(s):

    We consider the problem of finding a global minimum point of a given continuously differentiable function. The strategy is adopted of a sequential nonmonotone improvement of local optima. In particular, to escape the basin of attraction of a local minimum, a suitable Gaussian-based filling function is constructed using the quadratic model (possibly approximated) of the objective function, and added to the objective to fill the basin. Then, a procedure is defined where some new minima are determined, and that of them with the lowest function value is selected as the subsequent restarting point, even if its basin is higher than the starting one. Moreover, a suitable device employing repeatedly the centroid of all the minima determined, is introduced in order to improve the efficiency of the method in the solution of difficult problems where the number of local minima is very high. The algorithm is applied to a set of test functions from the literature and the numerical results are reported along with those obtained by applying a standard Monotonic Basin Hopping method for comparison. Copyright Springer Science+Business Media New York 2015

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s10589-015-9728-6
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Computational Optimization and Applications.

    Volume (Year): 61 (2015)
    Issue (Month): 3 (July)
    Pages: 713-729

    as
    in new window

    Handle: RePEc:spr:coopap:v:61:y:2015:i:3:p:713-729
    DOI: 10.1007/s10589-015-9728-6
    Contact details of provider: Web page: http://www.springer.com

    Order Information: Web: http://www.springer.com/math/journal/10589

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Giampaolo Liuzzi & Stefano Lucidi & Veronica Piccialli, 2010. "A partition-based global optimization algorithm," Journal of Global Optimization, Springer, vol. 48(1), pages 113-128, September.
    2. Bernardetta Addis & Andrea Cassioli & Marco Locatelli & Fabio Schoen, 2011. "A global optimization method for the design of space trajectories," Computational Optimization and Applications, Springer, vol. 48(3), pages 635-652, April.
    3. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:61:y:2015:i:3:p:713-729. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.