IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v61y2015i3p713-729.html
   My bibliography  Save this article

A filling function method for unconstrained global optimization

Author

Listed:
  • F. Lampariello

    ()

  • G. Liuzzi

    ()

Abstract

We consider the problem of finding a global minimum point of a given continuously differentiable function. The strategy is adopted of a sequential nonmonotone improvement of local optima. In particular, to escape the basin of attraction of a local minimum, a suitable Gaussian-based filling function is constructed using the quadratic model (possibly approximated) of the objective function, and added to the objective to fill the basin. Then, a procedure is defined where some new minima are determined, and that of them with the lowest function value is selected as the subsequent restarting point, even if its basin is higher than the starting one. Moreover, a suitable device employing repeatedly the centroid of all the minima determined, is introduced in order to improve the efficiency of the method in the solution of difficult problems where the number of local minima is very high. The algorithm is applied to a set of test functions from the literature and the numerical results are reported along with those obtained by applying a standard Monotonic Basin Hopping method for comparison. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • F. Lampariello & G. Liuzzi, 2015. "A filling function method for unconstrained global optimization," Computational Optimization and Applications, Springer, vol. 61(3), pages 713-729, July.
  • Handle: RePEc:spr:coopap:v:61:y:2015:i:3:p:713-729
    DOI: 10.1007/s10589-015-9728-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-015-9728-6
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giampaolo Liuzzi & Stefano Lucidi & Veronica Piccialli, 2010. "A partition-based global optimization algorithm," Journal of Global Optimization, Springer, vol. 48(1), pages 113-128, September.
    2. Bernardetta Addis & Andrea Cassioli & Marco Locatelli & Fabio Schoen, 2011. "A global optimization method for the design of space trajectories," Computational Optimization and Applications, Springer, vol. 48(3), pages 635-652, April.
    3. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:61:y:2015:i:3:p:713-729. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.