IDEAS home Printed from
   My bibliography  Save this article

An efficient compact quadratic convex reformulation for general integer quadratic programs


  • Alain Billionnet


  • Sourour Elloumi


  • Amélie Lambert



We address the exact solution of general integer quadratic programs with linear constraints. These programs constitute a particular case of mixed-integer quadratic programs for which we introduce in Billionnet et al. (Math. Program., 2010 ) a general solution method based on quadratic convex reformulation, that we called MIQCR. This reformulation consists in designing an equivalent quadratic program with a convex objective function. The problem reformulated by MIQCR has a relatively important size that penalizes its solution time. In this paper, we propose a convex reformulation less general than MIQCR because it is limited to the general integer case, but that has a significantly smaller size. We call this approach Compact Quadratic Convex Reformulation (CQCR). We evaluate CQCR from the computational point of view. We perform our experiments on instances of general integer quadratic programs with one equality constraint. We show that CQCR is much faster than MIQCR and than the general non-linear solver BARON (Sahinidis and Tawarmalani, User’s manual, 2010 ) to solve these instances. Then, we consider the particular class of binary quadratic programs. We compare MIQCR and CQCR on instances of the Constrained Task Assignment Problem. These experiments show that CQCR can solve instances that MIQCR and other existing methods fail to solve. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Alain Billionnet & Sourour Elloumi & Amélie Lambert, 2013. "An efficient compact quadratic convex reformulation for general integer quadratic programs," Computational Optimization and Applications, Springer, vol. 54(1), pages 141-162, January.
  • Handle: RePEc:spr:coopap:v:54:y:2013:i:1:p:141-162 DOI: 10.1007/s10589-012-9474-y

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. NESTEROV, Yu. & SCRIMALI, Laura, 2006. "Solving strongly monotone variational and quasi-variational inequalities," CORE Discussion Papers 2006107, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:54:y:2013:i:1:p:141-162. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.